
via NC State University
Multi-junction solar cells are both the most efficient type of solar cell on the market today and the most expensive type of solar cell to produce. In a proof-of-concept paper, researchers from North Carolina State University detail a new approach for creating multi-junction solar cells using off-the-shelf components, resulting in lower cost, high-efficiency solar cells for use in multiple applications.
Multi-junction, or stacked, solar cells are currently the most efficient cells on the market, converting up to 45% of the solar energy they absorb into electricity. The cells are constructed by stacking semiconductors with varying bandgaps on top of one another, thereby allowing the cell to absorb differing wavelengths of solar radiation. However, these cells are much more expensive to produce than less efficient thin solar films.
“We want to create high efficiency solar cells at a reasonable cost,” says Salah Bedair, Distinguished Professor of Electrical and Computer Engineering at NC State and lead author of the research. “Silicon-based thin solar cells are very popular because the material has around 20% efficiency and the cells cost about 1/10th what a multi-junction solar cell costs. And other low cost, lower efficiency materials are gaining popularity as well. If we could create stacked solar cells using this existing technology we would be well on our way to reaching our goal.”
However, you cannot merely stack different solar cells on top of each other – the different materials are structurally incompatible, and so charges cannot pass through them to be collected. To solve that problem in current multi-junction solar cells heavily doped metals are used to create a tunnel junction between the various layers – adding significant expense and complexity to the multi-junction solar cell’s creation.
Bedair and his team developed a simpler approach, utilizing intermetallic bonding to bond solar cells made of different materials. In a proof-of-concept, the team stacked an off-the-shelf gallium arsenide solar cell on top of a silicon solar cell.
“In multi-junction solar cells the tunnel junction enables electric connectivity by acting as a metal-to-metal connection,” Bedair says. “In our system, indium serves as a shortcut to that. The existing metal contacts of the individual cells are covered with indium films. The indium films bond to themselves easily at room temperature under low pressure. The result is a solar cell made of two different materials that is mechanically stacked and electrically connected.
“With this technique we are able to take advantage of inexpensive, off-the-shelf solutions without having to develop all new technology. Manufacturers could simply tweak their existing products slightly to increase their efficiency in multi-junction solar cells, rather than having to create new products.”
A patent application has been submitted for the work. The authors are interested in collaborating with potential academic and industry partners.
Learn more: Researchers Create Multi-Junction Solar Cells from Off-the-Shelf Components
The Latest on: Multi-junction solar cells
via Google News
The Latest on: Multi-junction solar cells
- Global Multi-Junction Solar Cell Market 2020 Driving Factors, Industry Growth, Key Vendors and Outcomes of the Five Forces Analysis by 2025on January 5, 2021 at 4:00 pm
Jan 06, 2021 (CDN Newswire via Comtex) -- The latest market research report titled Global Multi-Junction Solar Cell Market Growth 2020-2025 reveals the overview of the global industry, encompassing ...
- SunHydrogen Provides End-of-Year Corporate Updateon December 31, 2020 at 8:21 am
Currently, SunHydrogen is completing the build-out of the 100 prototype solar hydrogen units that include solar cell assembly with applied coatings and catalysts, and the housing for safe hydrogen ...
- SunHydrogen Provides End-of-Year Corporate Updateon December 31, 2020 at 4:08 am
Tax Planning Personal Finance Save for College Save for Retirement Invest in Retirement Research Mutual Funds Stocks ETFs Bonds Best Investments ...
- SunHydrogen Provides End-of-Year Corporate Updateon December 30, 2020 at 11:00 pm
The Gen 1 technology uses multi-junction amorphous silicon solar cells. In 2019, the company demonstrated 1000 hours of continuous hydrogen production utilizing Gen 1 cell technology. While the ...
- Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extractionon December 28, 2020 at 12:41 pm
1 Young Investigator Group Perovskite Tandem Solar Cells, Helmholtz-Zentrum Berlin, 12489 Berlin, Germany. 2 Department of Organic Chemistry, Kaunas University of Technology, Kaunas LT-50254, ...
- Utica Leaseco agrees to Ubiquity Solar Acquiring the Rights to the Assets of Alta Deviceson December 21, 2020 at 6:08 am
Dec. 21, 2020 /PRNewswire-PRWeb/ -- Utica Leaseco, LLC (Utica), an asset-based specialty finance company and Ubiquity Solar Inc. (Ubiquity ... SiGaAs multi-junction PV technology for the above ...
- EMCORE enters into an agreement to supply solar power systems in Canadaon December 13, 2020 at 4:00 pm
This compares favorably to typical efficiency of 15-21% on silicon-based solar cells and average 35% efficiency for competing multi-junction cells. The company is in discussions to set up a ...
- New fabrication method for perovskite solar cells promises to break the efficiency limiton December 11, 2020 at 12:58 am
Title of PhD-thesis: Interfacial, Compositional and Morphological Engineering for Single- and Multi-junction Perovskite Solar Cells. Supervisors: prof.dr.ir. René A.J. Janssen (TU/e) and dr.ir.
via Bing News