
Image: Randal McKenzie
Smart Needle
Syringes and hollow needles—among the most feared and most commonly used tools in medical practice—have been around for more than a century.
However, the precise insertion of these devices depends largely on the technique and skill of the person delivering the injection. And some anatomical regions, such as the space in the back of the eye, can be particularly tricky, and indeed risky, to inject.
Now research led by Harvard Medical School scientists at Brigham and Women’s Hospital have developed a highly sensitive intelligent injector for tissue targeting (i2T2) that detects changes in resistance in order to properly and safely deliver medication.
Their results, based on work done in preclinical models, are published Feb. 25, in Nature Biomedical Engineering.
“Targeting specific tissues using a conventional needle can be difficult and often requires a highly trained individual,” said senior corresponding author Jeffrey Karp, HMS professor of medicine at Brigham and Women’s. “In the past century there has been minimal innovation to the needle itself, and we saw this as an opportunity to develop better, more accurate devices. We sought to achieve improved tissue targeting while keeping the design as simple as possible for ease of use.”
One area that is difficult to target with a standard needle is the suprachoroidal space (SCS), located between the sclera and choroid in the back of the eye. The SCS has emerged as an important location for medication delivery but is challenging to inject precisely and safely because the needle must stop after transitioning through the sclera, which is less than 1 millimeter thick—about half as thick as a U.S. quarter. Injecting this region carries a risk for retinal damage. Other common tissue targets include the epidural space around the spinal cord, used for epidural anesthesia to ease pain during labor, the peritoneal space in the abdomen, and subcutaneous tissue between the skin and muscles, one of the most common sites of injection.
The i2T2 device was fabricated using a standard hypodermic needle and parts from commercially available syringes. Different types of tissues have different densities and as a result exert different pressure and different resistance to penetrating objects. The intelligent injector harnesses these differences to enable needle movement in a tissue-specific manner.
The driving force, maximal forces and frictional force of the injector were tested using a universal testing machine. The feedback to the injector is instantaneous, which allows for better tissue targeting and minimal needle overshoot past the desired location.
The i2T2 was tested on tissue from three animal models to examine delivery accuracy in the suprachoroidal, epidural and peritoneal spaces, as well as subcutaneously. Using both extracted tissue and an animal model, the researchers found that the i2T2 prevented overshoot injuries and precisely delivered medication to the desired location without any additional training or specialized technique.
In preclinical models, the researchers reported high coverage of contrast agent in the posterior section of the eye, indicating that the payload had been injected into the correct location. The experiments also showed the injector could be used to safely deliver stem cells to the back of the eye, which can be useful for regenerative therapies.
“The stem cells injected into the SCS survived, indicating that the force of injection and the transit through the SCS were gentle on the cells,” said Kisuk Yang, a co-author and HMS research fellow in medicine at Brigham and Women’s. “This should open the door to regenerative therapies for patients suffering from conditions of the eye and beyond.”
“We have optimized a staple of modern medicine into a more intelligent device capable of more precise tissue targeting and with a better safety profile,” said first author Girish Chitnis, a former postdoctoral fellow in Karp’s laboratory. “We hope that we will be able to adapt this technology for human use in the very near future.”
“The i2T2 will help facilitate injections in difficult-to-target locations in the body,” said co-author Miguel González-Andrades, HMS research fellow in ophthalmology at Massachusetts Eye and Ear and collaborator with Karp’s lab. “The next step toward human use is to demonstrate the utility and safety of the technology in relevant preclinical disease models.”
Learn more: Smart Needle
The Latest on: Smart Needle
via Google News
The Latest on: Smart Needle
- Advantest DC Scale XPS256 DPS Card Ramps to Production at Leading Semiconductor Manufacturerson January 12, 2021 at 2:19 am
Leading semiconductor test equipment supplier Advantest Corporation (TSE: 6857) today announced that its DC Scale XPS256 Device Power Supply (DPS) card, developed for use with the V93000 EXA Scale™ ...
- A thank you note to the 2020 Georgia football teamon January 11, 2021 at 3:16 am
Welcome to Good Day, UGA, your one-stop shop for Georgia football news and takes. Check us out every weekday morning for everything you need to know about Georgia football, recruiting, basketball and ...
- Can smart patches help give the coronavirus vaccine?on January 8, 2021 at 4:00 pm
The first coronavirus vaccine “smart patch” is being developed at a Welsh university, researchers say. The disposable device uses micro-needles to both administer the vaccine and monitor its efficacy ...
- The world’s first smart vaccine patch is being developed at Swansea Universityon January 7, 2021 at 11:32 am
Swansea University is developing the world’s first smart vaccine patch at the university’s IMPACT research centre, in partnership with the Imperial College of London. The patch is a small, disposable ...
- A victorious Justin Thomas and his dad found the perfect way to needle Tiger Woods and Charlie Woods over the holidayson January 7, 2021 at 6:53 am
Team Thomas and Team Woods stole the show at their respective debuts at the recent PNC Challenge Father-Son Championship. But their performance also seems to have sparked the next great (friendly) ...
- Welsh researchers developing world's first 'smart vaccine patch'on January 7, 2021 at 3:09 am
Researchers at Swansea University are in the process of developing the world’s first ‘smart vaccine device’, which is able to inject a Covid-19 vaccine as well as measure its effectiveness by ...
- COVID-19 vaccine ‘smart patch’ uses microneedles to deliver immunityon January 6, 2021 at 1:24 pm
A small patch is being developed that will allow patients to self-administer the vaccine and monitor its effectiveness within their body.
- ‘Smart patch’ could allow Covid-19 vaccine to be self-administeredon January 6, 2021 at 12:54 pm
A ‘smart patch’ containing the coronavirus vaccine that can be self-administered by patients is being developed by a team at the University of Swansea.
- Smart vaccine patch research gets go-aheadon January 6, 2021 at 11:27 am
Researchers at Swansea University have received £230,000 to develop the world's first smart vaccine device that will both deliver the COVID-19 vaccine and measure its efficacy through monitoring the ...
- Covid: Swansea Uni develops 'world's first' vaccine smart patchon January 5, 2021 at 10:16 pm
Video caption The first coronavirus vaccine 'smart patch' is being developed at a Welsh university, researchers say. The disposa ...
via Bing News