
An LLNL team 3D printed live yeast cells on lattices.
Lawrence Livermore National Laboratory (LLNL) researchers have 3D printed live cells that convert glucose to ethanol and carbon dioxide gas (CO2), a substance that resembles beer, demonstrating a technology that can lead to high biocatalytic efficiency.
Bioprinting living mammalian cells into complex 3D scaffolds has been widely studied and demonstrated for applications ranging from tissue regeneration to drug discovery to clinical implementation. In addition to mammalian cells, there is a growing interest in printing functional microbes as biocatalysts.
Microbes are extensively used in industry to convert carbon sources into valuable end-product chemicals that have applications in the food industry, biofuel production, waste treatment and bioremediation. Using live microbes instead of inorganic catalysts has advantages of mild reaction conditions, self-regeneration, low cost and catalytic speci?city.
The new research, which appears as an ACS Editors’ Choice article in the journal Nano Letters, shows that the additive manufacturing of live whole-cells can assist in research in microbial behaviors, communication, interaction with the microenvironment and for new bioreactors with high volumetric productivity.
In a case study, the team printed freeze-dried live biocatalytic yeast cells (Saccharomyces cerevisiae) into porous 3D structures. The unique engineered geometries allowed the cells to convert glucose to ethanol and CO2 very efficiently and similar to how yeast on its own can be used to make beer. Enabled by this new bio-ink material, the printed structures are self-supporting, with high resolution, tunable cell densities, large scale, high catalytic activity and long-term viability. More importantly, if genetically modified yeast cells are used, high-valuable pharmaceuticals, chemicals, food and biofuels can be produced as well.
“Compared to bulk film counterparts, printed lattices with thin filament and macro-pores allowed us to achieve rapid mass-transfer leading to several-fold increase in ethanol production,” said LLNL materials scientist Fang Qian, the lead and corresponding author on the paper. “Our ink system can be applied to a variety of other catalytic microbes to address broad application needs. The bioprinted 3D geometries developed in this work could serve as a versatile platform for process intensi?cation of an array of bioconversion processes using diverse microbial biocatalysts for production of high-value products or bioremediation applications.”
Other Livermore researchers include Cheng Zhu, Jennifer Knipe, Samantha Ruelas, Joshua Stolaroff, Joshua DeOtte, Eric Duoss, Christopher Spadaccini and Sarah Baker. This work was conducted in collaboration with National Renewable Energy Laboratory.
“There are several benefits to immobilizing biocatalysts, including allowing continuous conversion processes and simplifying product purification,” said chemist Baker, the other corresponding author on the paper. “This technology gives control over cell density, placement and structure in a living material. The ability to tune these properties can be used to improve production rates and yields. Furthermore, materials containing such high cell densities may take on new, unexplored beneficial properties because the cells comprise a large fraction of the materials.”
“This is the first demonstration for 3D printing immobilized live cells to create chemical reactors,” said engineer Duoss, a co-author on the paper. “This approach promises to make ethanol production faster, cheaper, cleaner and more efficient. Now we are extending the concept by exploring other reactions, including combining printed microbes with more traditional chemical reactors to create ‘hybrid’ or ‘tandem’ systems that unlock new possibilities.”
Learn more: 3D-printed live cells convert glucose to ethanol, carbon dioxide to enhance catalytic efficiency
The Latest on: Biocatalysts
[google_news title=”” keyword=”biocatalysts” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Biocatalysts
- Biocatalysis & Biocatalysts Market Size 2023 With Strong Supplier, Key Factors, Driving The Market Growth, Information 2029on February 7, 2023 at 6:16 pm
The Global Biocatalysis and Biocatalysts market is anticipated to rise at a considerable rate during the forecast period, between 2023 and 2028. In 2021, the market is growing at a steady rate and ...
- Biocatalysts Market Size and Analysis of Probiotics for Children on a Global Scale, Featuring Key Players and Forecast to 2029on February 3, 2023 at 2:18 am
The MarketWatch News Department was not involved in the creation of this content. Feb 03, 2023 (The Expresswire) -- Biocatalysts Market Size is projected to Reach Multimillion USD by 2029, In ...
- Protecting biocatalysts from oxygenon January 11, 2023 at 1:45 am
Certain enzymes from bacteria and algae can produce molecular hydrogen from protons and electrons – an energy carrier on which many hopes are riding. All they need for this purpose is light energy.
- Protecting biocatalysts from oxygenon January 10, 2023 at 4:00 pm
Certain enzymes from bacteria and algae can produce molecular hydrogen from protons and electrons—an energy carrier on which many hopes are riding. All they need for this purpose is light energy.
- Biocatalysis and Biocatalysts Market Growth and Key Dynamics 2023-2027 | Opportunities and Challenges, Top Regions and Emerging Technologieson January 5, 2023 at 4:43 am
Biocatalysis and Biocatalysts Market Report mainly covers future growth scenario, revenue estimations and share analysis with respect to all regions. It also includes CAGR status, demand supply status ...
- Whole-Cell and Cell-Free Biocatalysts for Value-Additionon December 23, 2022 at 2:46 am
Keywords: Biofuels, Process intensification, Life cycle analysis, Techno-economics, Net-Zero emissions, Circular bioeconomy, Microbial Diversity, Enzyme Discovery ...
- Biocatalysts Global Market Report 2022: Increasing Demand from Pharmaceutical Industry Fuels Sectoron December 20, 2022 at 3:18 am
DUBLIN, Dec. 20, 2022 /PRNewswire/ -- The "Biocatalysts Market - Global Outlook & Forecast 2022-2027" report has been added to ResearchAndMarkets.com's offering. The global biocatalysts market is ...
- Design and Application of Biocatalysts for Biofuel and Bio-based Material Productionon July 9, 2022 at 7:55 am
Sustainable utilization of waste and biomass streams for producing biofuels and bio-based materials has been one of the core research topics for decades. Microorganisms consisting of a broad spectrum ...
- Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatmenton February 20, 2021 at 1:53 pm
To further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions.
- Biocatalysts And Catalysis In Biotechnological Processon November 5, 2020 at 11:25 pm
In This chapter we come to know about role of biocatalysts and catalysis in Biotechnological processes. Catalysis is defined as a kinetic phenomenon, For example increasing the rate of a chemical ...
via Bing News