A double-network hydrogel (i). After stretching (ii), brittle sections break, allowing a generation of mechanoradicals, indicated by color change (iii). (Gong J. P. et al., Mechanoresponsive self-growing hydrogels inspired by muscle training, Science, February 1, 2019)
A strategy inspired by the process responsible for muscle growth could lead to the development of stronger, longer-lasting materials.
Hokkaido University researchers have developed a strategy to fabricate materials that become stronger in response to mechanical stress – mimicking skeletal muscle growth. Their findings, published in the journal Science, could pave the way for long-lasting materials that can adapt and strengthen based on surrounding conditions.
The strategy was inspired by the process that makes human skeletal muscles become stronger. As a result of strength training at the gym, for example, muscle fibres break down, encouraging the formation of new, stronger fibres. For this to happen, the muscles must be supplied with amino acids, the building blocks of proteins, which join together and form muscle fibres.
Hokkaido University’s Jian Ping Gong specializes in polymer science. Her research team developed a strategy employing ‘double-network hydrogels’ that emulates the building process of skeletal muscles.
Double-network hydrogels are a soft, yet tough material formed of about 85 weight percent water and two types of polymer networks: one rigid and brittle, and the other soft and stretchable.
The team placed a double-network hydrogel inside a solution containing molecules, called monomers, which can be joined to form larger compounds called polymers. This solution emulates the role of circulating blood carrying amino acids to skeletal muscles.
Applying tensile force (stretching) to the hydrogel causes some of its rigid and brittle polymer chains to break. This leads to the generation of a chemical species called ‘mechanoradicals’ at the ends of the broken polymer chains. These mechanoradicals can trigger the joining up of the monomer absorbed into the hydrogel from the surrounding solution into a polymer network, strengthening the material.
With successive stretching, more breaking down and building up occurs, similar to what happens with skeletal muscles undergoing strength training. Through this process, the hydrogel’s strength and stiffness improved 1.5 and 23 times respectively, and the weight of the polymers increased by 86%. The team was further able to tailor the material’s response to mechanical force by using a specific monomer that altered the gel’s reaction to heat; heated at high temperatures, the gel’s surface became more water-resistant.
The researchers say their work could help with the development of self-growing gel materials for applications as flexible exosuits for patients with skeletal injuries; these suits would potentially become stronger and more functional the more they are used. Professor Gong explained “Since many types of DN gels have similar mechanical features, this process could be applied to a wide range of gels, expanding the range of potential applications.”
Learn more: Self-growing materials that strengthen in response to force
The Latest on: Double-network hydrogels
via Google News
The Latest on: Double-network hydrogels
- Macromolecular bioscienceon March 1, 2021 at 4:01 pm
Gradient Mineralized and Porous Double-Network Hydrogel Effectively Induce the Differentiation of BMSCs into Osteochondral Tissue In Vitro for Potential Application in Cartilage Repair.
- International journal of biological macromoleculeson February 15, 2021 at 3:59 pm
Hydrogels based on low-methoxyl amidated citrus pectin and flaxseed gum formulated with tripeptide glycyl-l-histidyl-l-lysine improve the healing of experimental cutting wounds in rats.
- Hemostatic and antibacterial PVA/Kaolin composite sponges loaded with penicillin–streptomycin for wound dressing applicationson February 9, 2021 at 9:12 am
SEM analyses revealed a spongy-like structure of hydrogels associated with high dispersion of kaolin inside PVA matrix. The thermal characteristics of PVA/Kaolin were significantly ameliorated ...
- Bioinspired mechanically active adhesive dressings to accelerate wound closureon February 4, 2021 at 4:00 pm
Here, we present novel active adhesive dressings consisting of thermoresponsive tough adhesive hydrogels that combine high stretchability, toughness, tissue adhesion, and antimicrobial function. They ...
- Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoilon February 2, 2021 at 4:00 pm
These authors contributed equally to this work. See allHide authors and affiliations Stimuli-responsive hydrogels have large deformability but—when applied as actuators, smart switch, and artificial ...
- Advances in engineering hydrogelson February 2, 2021 at 4:00 pm
5 Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia. See allHide authors and affiliations Hydrogels are highly cross-linked polymer networks that are heavily swollen with ...
- “Nonswellable” Hydrogel Without Mechanical Hysteresison February 2, 2021 at 4:00 pm
and exceptionally tough double-network gels (4, 8), which use sacrificial bonds. Our strategy to achieve a robust hydrogel that can operate under physiological conditions is based on the control of ...
- Andrew Smithon January 14, 2021 at 11:24 am
My work was the first to demonstrate that a biological material uses the double network mechanism to achieve toughness ... Integrating mechanics and sequence data to characterize an unusually tough ...
- Christopher Rodell, PhDon November 30, 2018 at 4:09 pm
He went on to conduct his doctoral research at the University of Pennsylvania, working on the development and in vivo application of injectable supramolecular hydrogels. Following completion of his ...
via Bing News