
Graphene-enabled fitness band measures heart rate, hydration, oxygen saturation, breathing rate and temperature. The technology will be showcased at MWC19.
The Graphene Pavilion, organised by the Graphene Flagship and supported by the European Commission and GSMA, is returning to Mobile World Congress (MWC) 2019 with over 20 graphene-based prototypes, four of which are developed by the Graphene Flagship partner ICFO, based in Barcelona. These technologies aim to turn mobile phones into life saving devices.
The first of ICFO’s devices on display will allow customers to monitor their level of exposure to sunlight through a UV sensor. Designed as a flexible, transparent and disposable patch, it connects to a mobile device and alerts the user once he or she has reached a defined threshold of sun exposure.
Using the same core technology as the UV patch, ICFO’s fitness band is being developed to measure heart rate, hydration, oxygen saturation, breathing rate and temperature, while monitoring the user when he or she is exercising, for example. However, the fitness band does more than simply measure physical activity.
Consider the following scenario. A person is trekking in the remote amazon jungle with limited access to water. By measuring the skin hydration of their body with ICFO’s fitness band, the user can optimize water intake, preventing any sort of dehydration. Similarly, an explorer hiking to the peak of mount Everest could use the band to accurately monitor oxygen saturation in blood. The high altitude can severely effect oxygen saturation in the body. Using the band, the hiker could monitor these levels and emit a warning if oxygen saturation in the blood decreases drastically below a certain level.
In addition to these prototypes being exhibited at MWC 2019, ICFO will also showcase two other light-based graphene technologies. These include the world’s smallest single pixel spectrometer and a graphene-enabled hyperspectral image sensor, both with broadband capabilities, beyond to what was once perceived possible without the use of costly and bulky photodetection systems.
By enabling spectroscopy in such small dimensions, consumers could now be equipped with tools that previously were only available to highly specialised laboratories. From the detection of counterfeit drugs to the identification of harmful substances within a product that we use or food that we eat, compact, low-cost spectrometers could become an indispensable accessory of our everyday life.
“Built into a smart phone camera, the graphene-based camera sensor allows phones to see more than what’s visible to the human eye,” comments Frank Koppens, group leader at Graphene Flagship partner ICFO, and Chair of the Graphene Flagship MWC Committee. “Made up of hundreds of thousands of photodetectors, this incredibly small sensor is highly sensitive to UV and infrared light.”
“This technology would allow users in the supermarket to hold the camera to fruit and infer which is the most fresh piece. Or, in a more extreme example, the camera could be used for driving in dangerously dense fog by providing augmented outlines of surrounding vehicles on the windscreen.”
To find out more about these technologies and to meet the team of experts that have developed these applications, visit the Graphene Pavilion at MWC in NEXTech Hall 8.0 Stand 8.0K31 on February 25-28.
Learn more: Graphene-based wearables for health monitoring, food inspection and night vision
The Latest on: Graphene-based wearables
via Google News
The Latest on: Graphene-based wearables
- Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaceson January 22, 2021 at 12:50 pm
These authors contributed equally to this work. See allHide authors and affiliations Wearable sensing technology is an essential link to future personalized medicine. However, to obtain a complete ...
- Developing Sustainable Hybrid Graphene Materials for Supercapacitorson January 19, 2021 at 4:00 pm
One of the more novel approaches in recent years has been to combine graphene-based derivatives and turn them into metal-organic framework (MOF) structures. The Development of MOFs for Energy Storage ...
- Graphene-Based Electronic Fibers for Wearable Textileson January 17, 2021 at 4:00 pm
graphene-based electronic fibers to create touch-sensor and light-emitting devices, she said. This technique differs from many current solutions to develop wearable electronics, which basically glue ...
- Safe graphene battery won’t unexpectedly burst into flames like lithium-ionon January 13, 2021 at 7:16 pm
“Nanotech Energy has developed a game-changing non-flammable graphene-based lithium ion battery ... Coming soon to a laptop, mobile device, or wearable near you. Hopefully.
- Medical wearables: What they're wearing at CES this yearon January 12, 2021 at 3:59 pm
The wearable device developed by Apollo Neuroscience produces ... measuring biological parameters and sending updates to the cloud via a smartphone app. The non-invasive graphene-based dressing also ...
- Self‐folding 3-D photosensitive graphene architectureson January 11, 2021 at 6:47 am
Stimuli-responsive, self-folding, two-dimensional (2-D) layered materials have interesting functions for flexible electronics, wearables ... to create monolayer graphene-based reversible self ...
- Global Graphene Companies - Manufacturers and Supplierson August 14, 2020 at 11:38 pm
For instance, graphene-based nanomaterials have many promising applications ... energy, flexible electronics, wearables, water treatment and many more.
- Biomedical Applicationson November 5, 2019 at 4:44 am
The wearable artificial kidney (WAK) is considered to be a potential candidate offering better quality of life to patients with end-stage renal disease. The key technology, also a major challenge, is ...
- Skin Newson March 23, 2019 at 3:07 am
Researchers have designed graphene-based e-tattoos designed to act as ... of robotics and will be of interest to developers. If the wearable technology market is to progress, developers will ...
- First scalable graphene yarns for wearable textiles producedon March 3, 2019 at 11:04 pm
A team of researchers led by Dr Nazmul Karim and Prof Sir Kostya Novoselov at The University of Manchester have developed a method to produce scalable graphene-based yarn. Multi-functional wearable ...
via Bing News