
Foraminifera, or forams, as seen through the viewfinder of a microscope.
Researchers have developed an artificial intelligence (AI) program that can automatically provide species-level identification of microscopic marine organisms. The next step is to incorporate the AI into a robotic system that will help advance our understanding of the world’s oceans, both now and in our prehistoric past.
Specifically, the AI program has proven capable of identifying six species of foraminifera, or forams – organisms that have been prevalent in Earth’s oceans for more than 100 million years.
Forams are protists, neither plant nor animal. When they die, they leave behind their tiny shells, most less than a millimeter wide. These shells give scientists insights into the characteristics of the oceans as they existed when the forams were alive. For example, different types of foram species thrive in different kinds of ocean environments, and chemical measurements can tell scientists about everything from the ocean’s chemistry to its temperature when the shell was being formed.
However, evaluating those foram shells and fossils is both tedious and time consuming. That’s why an interdisciplinary team of researchers, with expertise ranging from robotics to paleoceanography, is working to automate the process.
“At this point, the AI correctly identifies the forams about 80 percent of the time, which is better than most trained humans,” says Edgar Lobaton, an associate professor of electrical and computer engineering at North Carolina State University and co-author of a paper on the work.
“But this is only the proof of concept. We expect the system to improve over time, because machine learning means the program will get more accurate and more consistent with every iteration. We also plan to expand the AI’s purview, so that it can identify at least 35 species of forams, rather than the current six.”
The current system works by placing a foram under a microscope capable of taking photographs. An LED ring shines light onto the foram from 16 directions – one at a time – while taking an image of the foram with each change in light. These 16 images are combined to provide as much geometric information as possible about the foram’s shape. The AI then uses this information to identify the foram’s species.
The scanning and identification takes only seconds, and is already as fast – or faster – than the fastest human experts.
“Plus, the AI doesn’t get tired or bored,” Lobaton says. “This work demonstrates the successful first step toward building a robotic platform that will be able to identify, pick and sort forams automatically.”
Lobaton and his collaborators have received a grant from the National Science Foundation (NSF), starting in January 2019, to build the fully-functional robotic system.
“This work is important because oceans cover about 70 percent of Earth’s surface and play an enormous role in its climate,” says Tom Marchitto, an associate professor of geological sciences at the University of Colorado, Boulder, and corresponding author of the paper.
“Forams are ubiquitous in our oceans, and the chemistry of their shells records the physical and chemical characteristics of the waters that they grew in. These tiny organisms bear witness to past properties like temperature, salinity, acidity and nutrient concentrations. In turn we can use those properties to reconstruct ocean circulation and heat transport during past climate events.
“This matters because humanity is in the midst of an unintentional, global-scale climate ‘experiment’ due to our emission of greenhouse gases,” Marchitto says. “To predict the outcomes of that experiment we need a better understanding of how Earth’s climate behaves when its energy balance is altered. The new AI, and the robotic system it will enable, could significantly expedite our ability to learn more about the relationship between the climate and the oceans across vast time scales.”
Learn more: Artificial Intelligence Can Identify Microscopic Marine Organisms
The Latest on: Machine learning
via Google News
The Latest on: Machine learning
- Machine Learning Technique Could Enhance Predictions of COVID-19 Outcomeson January 21, 2021 at 8:24 am
Emerging technique holds promise to create more robust machine learning models that extend beyond a single health system without compromising patient privacy ...
- Predictability in a Time of Uncertainty: Machine Learning in Logisticson January 21, 2021 at 6:01 am
Leveraging machine learning improves your ability to predict more accurate shipment times and reduces shippers potential risks.
- A machine learning project that will use Natural Language Processing (NLP) to classify who says a line of dialogueon January 21, 2021 at 2:44 am
A machine learning project that will use Natural Language Processing (NLP) to classify who says a line of dialogue - prestondunton/marvel-dialogue-nlp ...
- 4Paradigm Defends its Championship in China’s Machine Learning Platform Market in the 1st Half of 2020, According to IDCon January 20, 2021 at 9:53 pm
Paradigm stays on a leadership position from 2018 to the first half of 2020. IDC, a premier global provider of market intelligence, has recently published China AI Software and A ...
- Skyrim modders have a new machine learning tool that turns text to realistic NPC speechon January 20, 2021 at 2:06 pm
VASynth creator Dan Ruta used NPC voices from various Bethesda video games to train the tool's machine learning AI models. He published multiple flavors of the ...
- Understanding machine learning will go a long way toward higher adoption for SMBson January 20, 2021 at 11:56 am
Expert says larger companies are more willing to spend money for top talent to achieve machine learning, whereas smaller companies aren't able to do so. Pre-configured solutions can help.
- Machine Learning Market Global Industry Trends, Share, Size and Forecast Reporton January 20, 2021 at 6:21 am
Machine Learning Market Opportunities, Size, Share, Emerging Trends, Technological Innovation and Forecasts "The report on the global machine learning market provides qualitative and quantitative ...
- Machine learning could cut delays from traffic lightson January 20, 2021 at 6:20 am
Researchers have designed a new system that uses machine learning to improve the flow of vehicles at traffic lights.
- Researchers build models using machine learning technique to enhance predictions of COVID-19 outcomeson January 19, 2021 at 2:39 pm
Mount Sinai researchers have published one of the first studies using a machine learning technique called 'federated learning' to examine electronic health records to better predict how COVID-19 ...
- Machine Learning Finds More Gravitational Lenses Than All Astronomers Combinedon January 17, 2021 at 11:00 pm
The lensing effect stretches, distorts, and magnifies the background galaxy, as well as creating multiple images of it. One of Einstein’s most revolutionary predictions is that mass bends light.
via Bing News