A simple treatment using four small molecules converts human astrocytes – a common type of cells in the nervous system – into new neurons, which develop complex structures after 4 months, as pictured. Credit: Gong Chen Lab, Penn State
A simple drug cocktail that converts cells neighboring damaged neurons into functional new neurons could potentially be used to treat stroke, Alzheimer’s disease, and brain injuries.
A team of researchers at Penn State identified a set of four, or even three, molecules that could convert glial cells—which normally provide support and insulation for neurons—into new neurons. A paper describing the approach appears online in the journal Stem Cell Reports on February 7, 2019.
“The biggest problem for brain repair is that neurons don’t regenerate after brain damage, because they don’t divide,” said Gong Chen, professor of biology and Verne M. Willaman Chair in Life Sciences at Penn State and leader of the research team. “In contrast, glial cells, which gather around damaged brain tissue, can proliferate after brain injury. I believe turning glial cells that are the neighbors of dead neurons into new neurons is the best way to restore lost neuronal functions.”
Chen’s team previously published research describing a sequence of nine small molecules that could directly convert human glial cells into neurons, but the large number of molecules and the specific sequence required for reprogramming the glial cells complicated the transition to a clinical treatment. In the current study, the team tested various numbers and combinations of molecules to identify a streamlined approach to the reprogramming of astrocytes, a type of glial cells, into neurons.
“We identified the most efficient chemical formula among the hundreds of drug combinations that we tested,” said Jiu-Chao Yin, a graduate student in biology at Pen State who identified the ideal combination of small molecules. “By using four molecules that modulate four critical signaling pathways in human astrocytes, we can efficiently turn human astrocytes—as many as 70 percent—into functional neurons.”
The resulting chemically converted neurons can survive more than seven months in a culture dish in the lab. They form robust neural networks and send chemical and electrical signals to each other, as normal neurons do inside the brain.
Using three of the small molecules instead of four also results in the conversion of astrocytes into neurons, but the conversion rate drops by about 20 percent. The team also tried using only one of the molecules, but this approach did not induce conversion.
Chen and his team had previously developed a gene therapy technology to convert astrocytes into functional neurons, but due to the excessive cost of gene therapy—which can cost a patient half a million dollars or more—the team has been pursuing more economical approaches to convert glial cells into neurons. The delivery system for gene therapies is also more complex, requiring the injection of viral particles into the human body, whereas the small molecules in the new method can be chemically synthesized and packaged into a pill.
“The most significant advantage of the new approach is that a pill containing small molecules could be distributed widely in the world, even reaching rural areas without advanced hospital systems,” said Chen. “My ultimate dream is to develop a simple drug delivery system, like a pill, that can help stroke and Alzheimer’s patients around the world to regenerate new neurons and restore their lost learning and memory capabilities.”
The researchers acknowledge that many technical issues still need to be resolved before a drug using small molecules could be created, including the specifics of drug packaging and delivery. They also plan to investigate potential side effects of this approach in future studies in order to develop the safest drug pills. Nonetheless, the research team is confident that this combination of molecules has promising implications for future drug therapies to treat individuals with neurological disorders.
“Our years of effort in discovering this simplified drug formula take us one step closer to reaching our dream,” said Chen.
Learn more: Simple drug combination creates new neurons from neighboring cells
The Latest on: Small molecules
via Google News
The Latest on: Small molecules
- ChemDiv Presents Focused and Targeted Screening Compound Librarieson August 1, 2022 at 1:56 pm
Over the past three decades in commercial medicine discovery, ChemDiv have developed a range of approaches to both chemical diversity and highly specialized (focused) compound selections. ChemDiv’s ...
- Rubedo Life Sciences Expands Leadership Team with Ali Siam as Chief Business Officer and Ofir Moreno, Ph.D., as SVP of Drug Discoveryon August 1, 2022 at 5:30 am
Rubedo Life Sciences Expands Leadership Team with Ali Siam as Chief Business Officer and Ofir Moreno, Ph.D., as SVP of Drug Discovery ...
- BridGene Biosciences names David Sperandio, Ph.D., as Head of Chemistryon August 1, 2022 at 4:33 am
BridGene Biosciences, Inc., a biotechnology company using a proprietary chemoproteomics technology to discover and develop small molecules for high value, traditionally undruggable targets, today ...
- Matinas BioPharma to Participate in the BTIG Biotechnology Conferenceon August 1, 2022 at 4:00 am
Matinas BioPharma (NYSE AMER: MTNB), a clinical-stage biopharmaceutical company focused on improving the intracellular delivery of nucleic acids and small molecules with its lipid nanocrystal (LNC) ...
- 7 Hills Pharma Receives $3MM SBIR Grant from NIAID to Accelerate Novel Vaccine Combination Against Chagas Diseaseon August 1, 2022 at 2:03 am
Chagas disease is one of five Neglected Parasitic Infections prioritized by the Centers for Disease Control and Prevention. It is caused by the parasite Trypanosoma cruzi ( Tc ), which is spread by ...
- Small molecule prevents tumour cells from spreadingon July 27, 2022 at 9:47 am
Leiden chemists, together with colleagues at the University of York (UK) and Technion (Israel) have discovered a small, sugar-like molecule that maintains the integrity of tissue around a tumor during ...
- What do molecules look like?on July 21, 2022 at 12:04 am
Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to [email protected] do molecules look like? – Justice B., age 6, ...
- Chiral molecules beat magnets when it comes to boosting water splittingon July 20, 2022 at 6:30 am
New electrocatalysis electrodes have been created that are simpler and cheaper than conventional ones, and can substantially increase the efficiency of water splitting. Decorated with chiral molecules ...
- Research team accelerates imaging techniques for capturing small molecules' structureson July 12, 2022 at 10:58 am
Research team accelerates imaging techniques for capturing small molecules' structures Date: July 12, 2022 Source: University of Illinois Grainger College of Engineering Summary: A new research ...
- Researchers accelerate imaging techniques for capturing small molecules' structureson July 12, 2022 at 12:54 am
A University of Illinois Urbana-Champaign research effort led by Pinshane Huang is accelerating imaging techniques to visualize structures of small molecules clearly—a process once thought ...
via Bing News