
Rice University scientists used E. coli bacteria as a platform to test protein switches that can be used to control the flow of electrons. Proteins placed in cells can simply be turned on and off with chemical signals. Illustration by Josh Atkinson
Rice University scientists create electrical protein switches triggered by chemicals
Scientists at Rice University have developed synthetic protein switches to control the flow of electrons.
The proof-of-concept, metal-containing proteins made in the Rice lab of synthetic biologist Joff Silberg are expressed within cells upon the introduction of one chemical and are functionally activated by another chemical. If the proteins have been placed in the cell, they can simply be turned on and off.
“This is not a metaphor for a switch, it is a literal electrical switch built from a protein,” Silberg said.
The proteins could facilitate next-generation bioelectronics, including complete biological circuits within cells that mimic their electronic counterparts. The possible applications include living sensors, electronically controlled metabolic pathways for chemical synthesis and active pills that sense their environment and release drugs only when needed.
The work appears in Nature Chemical Biology.
“Biology is really good at sensing molecules,” said Silberg, a professor of biosciences and bioengineering. “That’s an amazing thing. Think about how complex the cell is, and how proteins evolve that can respond to a single prompt in a sea of information. We want to leverage that exquisite ability to build more elaborate biomolecules and use these to develop useful synthetic biology technologies.”
The Rice team takes advantage of those innate abilities. “Natural proteins that move electrons more or less act as wires that are always there,” said Systems, Synthetic, and Physical Biology graduate student and lead author Josh Atkinson. “If we can turn these pathways on and off, we can make cells operate more efficiently.”
Rice’s metalloprotein switches – so called for their iron content – are quick, Silberg said. Nature typically controls electron flow by using genetic mechanisms to control the production of the protein “wires.”
“It’s all transcriptional,” he said. “Even in a fast-growing E. coli bacteria, it takes many minutes. By contrast, protein switches function on a time scale of seconds.”
To make the switch – which they use in a synthetic electron transfer pathway – the researchers needed a stable protein that could be reliably split along its peptide backbone to allow for the insertion of protein fragments that complete or break the circuit. They based the switch on ferredoxin, a common iron-sulfur protein that mediates electron transfer in all the domains of life.
Atkinson built switches embedded in E. coli that can be turned on in the presence (or off in the absence) of 4-hydroxytamoxifen, an estrogen receptor modulator used to fight breast and other cancers, or by bisphenol A (BPA), a synthetic chemical used in plastics.
Their E. coli bacterium is a mutant strain that is programmed to only grow in a sulfate medium when all of the components of the ferredoxin electron transport chain – including electron donor and acceptor proteins – are expressed. That way, the bacteria could only grow if the switches turn on and transfer electrons as planned.
Silberg said the discovery should lead to custom-designed switches for many applications, including contact with external electronic devices. “It’s why we’ve been so gung-ho about this idea of bioelectronics, a whole field that’s emerging as synthetic biology gets more control over the design,” he said. “Once you can standardize this, there are all kinds of things we can build with cells.”
That could include smart pills that release medications only on demand, or gut biome detectors that report on conditions. Or perhaps electrical circuits contained entirely within cells.
“We can already map a lot of what electrical engineers do with capacitors and resistors onto metabolism, but until now, there have been no switches,” Silberg said.
He suggested multiple switches could also turn a cell into a biological processor. “Then we could see digital parallel processing in the cell,” he said. “It changes the way we look at biology.”
Learn more: Switch-in-a-cell electrifies life
The Latest on: Bioelectronics
via Google News
The Latest on: Bioelectronics
- Scientists develop new method to create bioelectronics out of microscopic structureson January 24, 2021 at 3:24 am
Bringing together soft, malleable living cells with hard, inflexible electronics can be a difficult task. UChicago researchers have developed a new method to face this challenge by utilizing ...
- Bottom-up approach yields highly customizable bioelectronicson January 22, 2021 at 7:10 am
Researchers have designed a bottom-up approach to create carbon-based bioelectronics that could be used in medical research or for devices such as tissue stimulators to treat Parkinson?s disease or ...
- NeuroSigma Successfully Obtains HCPCS Codes from CMS for the Monarch eTNS Systemon January 22, 2021 at 5:53 am
LOS ANGELES, Jan. 22, 2021 /PRNewswire/ -- NeuroSigma, Inc., a Los Angeles-based bioelectronics company that is commercializing Trigeminal Nerve Stimulation (TNS) technology for treating ...
- NeuroSigma Successfully Obtains HCPCS Codes from CMS for the Monarch eTNS Systemon January 22, 2021 at 5:53 am
NeuroSigma, Inc., a Los Angeles-based bioelectronics company that is commercializing Trigeminal Nerve Stimulation (TNS) technology for treating neurological and neuropsychiatric disorders, announces t ...
- New self-assembly method creates bioelectronics out of microscopic structureson January 22, 2021 at 5:34 am
Bringing together soft, malleable living cells with hard, inflexible electronics can be a difficult task. UChicago researchers have developed a new method to face this challenge by utilizing ...
- New self-assembly method creates bioelectronics out of microscopic structureson January 21, 2021 at 6:58 am
UChicago researchers have developed a new method to face this challenge by utilizing microscopic structures to build up bioelectronics rather than creating them from the top down—creating a highly ...
- BioElectronics Corporation Announces Substantial Increase in 4th Quarter 2020 Revenue; Major ...on January 19, 2021 at 10:07 pm
BioElectronics Corporation (OTC PINK:BIEL) is pleased to report that Q4 revenue for 2020 exceeded $519,000, representing an increase of 241% when compared to Q3 revenue in 2020 ($151,956).
- BioElectronics Corporation Announces Substantial Increase in 4th Quarter 2020 Revenue; Major Convertible Debt Holders Agree to Forego Interest in 2021on January 19, 2021 at 5:38 am
Disclaimer | Commerce Policy | Made In NYC | Stock quotes by finanzen.net Frederick, Maryland, Jan. 19, 2021 (GLOBE NEWSWIRE) -- via NewMediaWire-- BioElectronics Corporation (OTC PINK:BIEL ...
- BioElectronics Corp.on January 14, 2021 at 4:00 pm
Stocks: Real-time U.S. stock quotes reflect trades reported through Nasdaq only; comprehensive quotes and volume reflect trading in all markets and are delayed at least 15 minutes. International ...
- Glucose Fuel Cells, Bioelectronics Pair Off in Next-Gen Implantson January 13, 2021 at 4:00 pm
To be practical, they therefore require concomitant innovations in ultra-low-power electronics--a requirement that has led the MIT researchers to develop ultra-low-power bioelectronics. "Such ...
via Bing News