
Two-dimensional metal carbides spark a reaction that splits water into oxygen and valuable hydrogen gas. Berkeley researchers have discovered an easy new recipe for cooking up these nanometer-thin sheets that is nearly as simple as making Jell-O from a box. (Xining Zang graphic, via Wiley)
A cheap and effective new catalyst developed by researchers at the University of California, Berkeley, can generate hydrogen fuel from water just as efficiently as platinum, currently the best — but also most expensive — water-splitting catalyst out there.
The catalyst, which is composed of nanometer-thin sheets of metal carbide, is manufactured using a self-assembly process that relies on a surprising ingredient: gelatin, the material that gives Jell-O its jiggle.
“Platinum is expensive, so it would be desirable to find other alternative materials to replace it,” said senior author Liwei Lin, professor of mechanical engineering at UC Berkeley. “We are actually using something similar to the Jell-O that you can eat as the foundation, and mixing it with some of the abundant earth elements to create an inexpensive new material for important catalytic reactions.”
The work appears in the Dec. 13 print edition of the journal Advanced Materials.
A zap of electricity can break apart the strong bonds that tie water molecules together, creating oxygen and hydrogen gas, the latter of which is an extremely valuable source of energy for powering hydrogen fuel cells. Hydrogen gas can also be used to help store energy from renewable yet intermittent energy sources like solar and wind power, which produce excess electricity when the sun shines or when the wind blows, but which go dormant on rainy or calm days.
But simply sticking an electrode in a glass of water is an extremely inefficient method of generating hydrogen gas. For the past 20 years, scientists have been searching for catalysts that can speed up this reaction, making it practical for large-scale use.
“The traditional way of using water gas to generate hydrogen still dominates in industry. However, this method produces carbon dioxide as byproduct,” said first author Xining Zang, who conducted the research as a graduate student in mechanical engineering at UC Berkeley. “Electrocatalytic hydrogen generation is growing in the past decade, following the global demand to lower emissions. Developing a highly efficient and low-cost catalyst for electrohydrolysis will bring profound technical, economical and societal benefit.”
To create the catalyst, the researchers followed a recipe nearly as simple as making Jell-O from a box. They mixed gelatin and a metal ion — either molybdenum, tungsten or cobalt — with water, and then let the mixture dry.
“We believe that as gelatin dries, it self-assembles layer by layer,” Lin said. “The metal ion is carried by the gelatin, so when the gelatin self-assembles, your metal ion is also arranged into these flat layers, and these flat sheets are what give Jell-O its characteristic mirror-like surface.”
Heating the mixture to 600 degrees Celsius triggers the metal ion to react with the carbon atoms in the gelatin, forming large, nanometer-thin sheets of metal carbide. The unreacted gelatin burns away.
The researchers tested the efficiency of the catalysts by placing them in water and running an electric current through them. When stacked up against each other, molybdenum carbide split water the most efficiently, followed by tungsten carbide and then cobalt carbide, which didn’t form thin layers as well as the other two. Mixing molybdenum ions with a small amount of cobalt boosted the performance even more.
“It is possible that other forms of carbide may provide even better performance,” Lin said.
The two-dimensional shape of the catalyst is one of the reasons why it is so successful. That is because the water has to be in contact with the surface of the catalyst in order to do its job, and the large surface area of the sheets mean that the metal carbides are extremely efficient for their weight.
Because the recipe is so simple, it could easily be scaled up to produce large quantities of the catalyst, the researchers say.
“We found that the performance is very close to the best catalyst made of platinum and carbon, which is the gold standard in this area,” Lin said. “This means that we can replace the very expensive platinum with our material, which is made in a very scalable manufacturing process.”
Learn more: Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst
The Latest on: Hydrogen fuel catalyst
via Google News
The Latest on: Hydrogen fuel catalyst
- Making hydrogen energy with the common nickelon January 12, 2021 at 8:57 am
To resolve the energy crisis and environmental issues, research to move away from fossil fuels and convert to eco-friendly and sustainable hydrogen energy is well underway around the world. Recently, ...
- Fuel Cell Catalyst Market Growth, Future Prospects And Competitive Analysis to 2026 | Fortune Business Insightson January 11, 2021 at 4:45 pm
The global "fuel cell catalyst"market size is set to undergo a robust growth period owing to the increasing demand ...
- Tweaking one layer of atoms on a catalyst's surface can make it work betteron January 11, 2021 at 11:58 am
When an LNO catalyst with a nickel-rich surface carries out a water-splitting reaction, its surface atoms rearrange from a cubic to a hexagonal pattern and its efficiency doubles. Deliberately ...
- Study shows tweaking one layer of atoms on a catalyst's surface can make it work betteron January 11, 2021 at 11:49 am
Scientists crafting a nickel-based catalyst used in making hydrogen fuel built it one atomic layer at a time to gain full control over its chemical properties. But the finished material didn't behave ...
- How a surprising surface transformation boosts catalyst activity (image)on January 11, 2021 at 10:59 am
A study led by SLAC National Accelerator Laboratory and Stanford University shows how tweaking the surface layer of a catalyst can make it work better. This particular catalyst is used to split water, ...
- Key step taken toward cleaner, more sustainable production of hydrogenon January 10, 2021 at 10:44 am
The scientists used advanced experimental tools to forge a clearer understanding of an electrochemical catalytic process that's cleaner and more sustainable than deriving hydrogen from natural gas.
- Scientists discover method for making rocket fuel on Marson January 9, 2021 at 12:02 pm
Scientists at the University of California, Irvine have come up with a way to make methane-based rocket fuel from resources available on Mars.
- Why we need green hydrogen?on January 8, 2021 at 3:27 am
Green hydrogen has been in the news often lately. President-elect Biden has promised to use renewable energy to produce green hydrogen that costs less than natural gas. The Department of Energy is ...
- New, cheaper catalyst turns carbon dioxide into jet fuelon January 7, 2021 at 6:30 am
Researchers envisage extracting carbon dioxide from the atmosphere to make 'net-zero' hydrocarbon fuel for jet engines ...
- 3 Hydrogen Stocks Fueling Biden’s Energy Planon January 6, 2021 at 9:18 am
Here are hydrogen stocks to buy that can continue to rally with President-elect Joe Biden's ambitious plans for clean energy in the U.S.
via Bing News