A new MIT plane is propelled via ionic wind. Batteries in the fuselage (tan compartment in front of plane) supply voltage to electrodes (blue/white horizontal lines) strung along the length of the plane, generating a wind of ions that propels the plane forward.
Image: Christine Y. He
The silent, lightweight aircraft doesn’t depend on fossil fuels or batteries
Since the first airplane took flight over 100 years ago, virtually every aircraft in the sky has flown with the help of moving parts such as propellers, turbine blades, and fans, which are powered by the combustion of fossil fuels or by battery packs that produce a persistent, whining buzz.
Now MIT engineers have built and flown the first-ever plane with no moving parts. Instead of propellers or turbines, the light aircraft is powered by an “ionic wind” — a silent but mighty flow of ions that is produced aboard the plane, and that generates enough thrust to propel the plane over a sustained, steady flight.
Unlike turbine-powered planes, the aircraft does not depend on fossil fuels to fly. And unlike propeller-driven drones, the new design is completely silent.
“This is the first-ever sustained flight of a plane with no moving parts in the propulsion system,” says Steven Barrett, associate professor of aeronautics and astronautics at MIT. “This has potentially opened new and unexplored possibilities for aircraft which are quieter, mechanically simpler, and do not emit combustion emissions.”
He expects that in the near-term, such ion wind propulsion systems could be used to fly less noisy drones. Further out, he envisions ion propulsion paired with more conventional combustion systems to create more fuel-efficient, hybrid passenger planes and other large aircraft.
Barrett and his team at MIT have published their results today in the journal Nature.
Hobby crafts
Barrett says the inspiration for the team’s ion plane comes partly from the movie and television series, “Star Trek,” which he watched avidly as a kid. He was particularly drawn to the futuristic shuttlecrafts that effortlessly skimmed through the air, with seemingly no moving parts and hardly any noise or exhaust.
“This made me think, in the long-term future, planes shouldn’t have propellers and turbines,” Barrett says. “They should be more like the shuttles in ‘Star Trek,’ that have just a blue glow and silently glide.”
About nine years ago, Barrett started looking for ways to design a propulsion system for planes with no moving parts. He eventually came upon “ionic wind,” also known as electroaerodynamic thrust — a physical principle that was first identified in the 1920s and describes a wind, or thrust, that can be produced when a current is passed between a thin and a thick electrode. If enough voltage is applied, the air in between the electrodes can produce enough thrust to propel a small aircraft.
For years, electroaerodynamic thrust has mostly been a hobbyist’s project, and designs have for the most part been limited to small, desktop “lifters” tethered to large voltage supplies that create just enough wind for a small craft to hover briefly in the air. It was largely assumed that it would be impossible to produce enough ionic wind to propel a larger aircraft over a sustained flight.
“It was a sleepless night in a hotel when I was jet-lagged, and I was thinking about this and started searching for ways it could be done,” he recalls. “I did some back-of-the-envelope calculations and found that, yes, it might become a viable propulsion system,” Barrett says. “And it turned out it needed many years of work to get from that to a first test flight.”
The team’s final design resembles a large, lightweight glider. The aircraft, which weighs about 5 pounds and has a 5-meter wingspan, carries an array of thin wires, which are strung like horizontal fencing along and beneath the front end of the plane’s wing. The wires act as positively charged electrodes, while similarly arranged thicker wires, running along the back end of the plane’s wing, serve as negative electrodes.
The fuselage of the plane holds a stack of lithium-polymer batteries. Barrett’s ion plane team included members of Professor David Perreault’s Power Electronics Research Group in the Research Laboratory of Electronics, who designed a power supply that would convert the batteries’ output to a sufficiently high voltage to propel the plane. In this way, the batteries supply electricity at 40,000 volts to positively charge the wires via a lightweight power converter.
Once the wires are energized, they act to attract and strip away negatively charged electrons from the surrounding air molecules, like a giant magnet attracting iron filings. The air molecules that are left behind are newly ionized, and are in turn attracted to the negatively charged electrodes at the back of the plane.
As the newly formed cloud of ions flows toward the negatively charged wires, each ion collides millions of times with other air molecules, creating a thrust that propels the aircraft forward.
Learn more: MIT engineers fly first-ever plane with no moving parts
The Latest on: Ionic wind
via Google News
The Latest on: Ionic wind
- Ionic 5 Framework Now Available to the Appery.io Developer Communityon March 2, 2021 at 6:57 am
March 2, 2021 /PRNewswire/ -- Exadel (www.exadel.com), a software engineering company that delivers digital platforms, products, and applications, today announced the Ionic 5 framework is ...
- Sick Of Life's Bullsh*t? Here Are 50 Clever Things You Should've Bought Sooneron February 28, 2021 at 7:07 am
It uses ionic technology to help reduce unwanted frizz ... It's perfect for reading outside when the wind is blowing, and the waterproof exterior keeps it safe from damage. Simply get these ...
- Fabricating the future with a new environment friendly method of polymerizationon February 23, 2021 at 4:00 pm
Now, scientists have successfully demonstrated the room temperature formation of vinyl and styrene polymers -- two most abundantly found polymers in plastics -- using non-ionic, non-metallic ...
- Ionic Wind Powers Noiseless Flighton February 23, 2021 at 4:00 pm
A new MIT airplane is propelled via ionic wind. Batteries in the fuselage (tan compartment in front of plane) supply voltage to electrodes (blue/white horizontal lines) strung along the length of the ...
- Ionic raises cash for Ugandan projecton February 17, 2021 at 12:44 pm
PERTH (miningweekly.com) – ASX-listed Ionic Rare Earths will raise A$12-million in a share placement, priced at 4c each to both new and existing institutional shareholders. The company on ...
- Nanoscale Advances Lead to Big Power for Supercapacitorson February 16, 2021 at 4:00 pm
Such capacitors could provide backup power, store energy from renewable sources, control blade position in wind turbines ... organic, or ionic — also play a major role in supercapacitor performance.
- Astro Bob: 'Earth wind' may generate water on the moonon February 16, 2021 at 10:49 am
Earth's polar wind seemed the likely suspect ... How amazing to think that ionic breezes from the Earth may help coat the lunar surface with a life-giving water potentially beneficial to future ...
- What Batteries Will Power The Future?on February 10, 2021 at 4:00 pm
Battery technology may be the keystone of the energy transition, facilitating the decarbonization of the transportation sector while providing a critical backstop for intermittent solar and wind ...
via Bing News