
A chip that shows the word quantum. Each dot represents a single quantum light source, demonstrating the scalability and precision of the technique.
Household lightbulbs give off a chaotic torrent of energy, as trillions of miniscule light particles – called photons – reflect and scatter in all directions. Quantum light sources, on the other hand, are like light guns that fire single photons one by one, each time they are triggered, enabling them to carry hack-proof digital information – technology attractive to industries such as finance and defense.
Now, researchers at Stevens Institute of Technology and Columbia University have developed a scalable method for creating large numbers of these quantum light sources on a chip with unprecedented precision that not only could pave the way for the development of unbreakable cryptographic systems but also quantum computers that can perform complex calculations in seconds that would take normal computers years to finish.
“The search for scalable quantum light sources has been going on for 20 years, and more recently has become a national priority,” says Stefan Strauf, who led the work and is also director of Stevens’ Nanophotonic Lab. “This is the first time anyone has achieved a level of spatial control combined with high efficiency on a chip that is scalable, all of which are needed to realize quantum technologies.”
The work, to be reported in the Oct. 29 advance online issue of Nature Nanotechnology, describes a new method for creating quantum light sources on demand in any desired location on a chip, by stretching an atom-thin film of semiconducting material over nanocubes made of gold. Like taut cling-wrap, the film stretches over the corners of the nanocubes, imprinting defined locations where single-photon emitters form.
Past research has tested methods for producing quantum emitters in defined locations, but these designs were not scalable or efficient at triggering single photons frequently enough to be practically useful. Strauf and his team changed all that by becoming the first to combine spatial control and scalability with the ability to efficiently emit photons on demand.
To achieve these capabilities, Strauf’s team designed a unique approach where the gold nanocube serves a dual purpose: it imprints the quantum emitter on the chip and it acts as an antenna around it. By creating the quantum emitters in between the gold nanocube and mirror, Strauf left a five-nanometer narrow gap – 20,000 times smaller than the width of a sheet of paper.
“This tiny space between the mirror and nanocube creates an optical antenna that funnels all the photons into that five-nanometer gap, thereby concentrating all the energy” says Strauf. “Essentially, it provides the necessary boost for the single photons to be emitted rapidly from the defined location and in the desired direction.”
To further improve the efficiency of the quantum light sources, Strauf teamed up with Katayun Barmak and James Hone, of Columbia University, who developed a technique for growing semiconductor crystals that are nearly free of defects. Using these unique crystals, Stevens’ graduate student Yue Luo built rows of quantum emitters on a chip by stretching the atom-thin material over the nanocubes. The nanoantennas are formed by attaching the mirror, on the bottom side of the nanocube.
The result: a record-high firing of 42 million single photons per second; in other words, every second trigger created a photon on demand, compared to only one in 100 triggers previously.
Though tiny, the emitters are remarkably tough. “They’re astonishingly stable,” Strauf says. “We can cool them and warm them and disassemble the resonator and reassemble it, and they still work.” Most quantum emitters must be kept chilled to -273°C but the new technology works up to -70°C. “We’re not yet at room temperature,” says Strauf, “but current experiments show that it’s feasible to get there.”
Learn more: Researchers Create First Scalable Platform for On-chip Quantum Light Sources
The Latest on: Quantum light sources
via Google News
The Latest on: Quantum light sources
- Nanoscale Diamonds Generate More Efficient Electron Beamson January 21, 2021 at 6:52 am
Electron beamlets as observed on YAG screens at varying distances from a cathode source. Image Credit ... Field emission operates by reducing the quantum barriers that electrons can, according to the ...
- Researchers improve data readout by using 'quantum entanglement'on January 21, 2021 at 6:24 am
Researchers say they have been able to greatly improve the readout of data from digital memories—thanks to quantum entanglement.
- Diamond laser taps into spooky quantum world for true randomizationon January 19, 2021 at 10:10 pm
Randomization may seem simple, but there’s basically no such thing in classical physics – pretty much everything could be theoretically predicted if you had enough information. For true randomization ...
- Research team develops fast and affordable quantum random number generatoron January 19, 2021 at 8:03 pm
Scientists have developed a fast quantum random number generator. The device produces randomness at a rate of 8.05 gigabits per second.
- Light-controlled Higgs modes found in superconductors; potential sensor, computing useson January 19, 2021 at 6:12 pm
Researchers have discovered a short-lived form of the famous Higgs boson -- subject of a groundbreaking search at the Large Hadron Collider -- within an iron-based superconductor. This Higgs mode can ...
- Scientists Develop Fastest-Ever Quantum Random Number Generatoron January 18, 2021 at 1:14 am
An international research team has developed a fast and affordable quantum random number generator. The device created by scientists from NUST MISIS, Russian Quantum Center, University of Oxford, ...
- Researchers conduct security analysis and improve quantum random number generationon January 14, 2021 at 1:24 pm
Recently, the research team led by academician GUO Guangcan from the University of Science and Technology of China of the Chinese Academy of Sciences has made security analysis and improvement of ...
- USTC makes security analysis and improvement of quantum random number generationon January 14, 2021 at 9:02 am
Recently, the research team led by academician GUO Guangcan from the USTC of the Chinese Academy of Sciences has made security analysis and improvement of source independent quantum random number ...
- Quantum Dot Market 2020 Growth and Forecast Survey Till 2026on January 11, 2021 at 2:51 pm
The Quantum dots market is expected to exceed more than US$ 32.0 billion by 2024 growing at around 60% CAGR for the forecast period. You Can Browse Full Report Here: The main driving factors for ...
via Bing News