A chip that shows the word quantum. Each dot represents a single quantum light source, demonstrating the scalability and precision of the technique.
Household lightbulbs give off a chaotic torrent of energy, as trillions of miniscule light particles – called photons – reflect and scatter in all directions. Quantum light sources, on the other hand, are like light guns that fire single photons one by one, each time they are triggered, enabling them to carry hack-proof digital information – technology attractive to industries such as finance and defense.
Now, researchers at Stevens Institute of Technology and Columbia University have developed a scalable method for creating large numbers of these quantum light sources on a chip with unprecedented precision that not only could pave the way for the development of unbreakable cryptographic systems but also quantum computers that can perform complex calculations in seconds that would take normal computers years to finish.
“The search for scalable quantum light sources has been going on for 20 years, and more recently has become a national priority,” says Stefan Strauf, who led the work and is also director of Stevens’ Nanophotonic Lab. “This is the first time anyone has achieved a level of spatial control combined with high efficiency on a chip that is scalable, all of which are needed to realize quantum technologies.”
The work, to be reported in the Oct. 29 advance online issue of Nature Nanotechnology, describes a new method for creating quantum light sources on demand in any desired location on a chip, by stretching an atom-thin film of semiconducting material over nanocubes made of gold. Like taut cling-wrap, the film stretches over the corners of the nanocubes, imprinting defined locations where single-photon emitters form.
Past research has tested methods for producing quantum emitters in defined locations, but these designs were not scalable or efficient at triggering single photons frequently enough to be practically useful. Strauf and his team changed all that by becoming the first to combine spatial control and scalability with the ability to efficiently emit photons on demand.
To achieve these capabilities, Strauf’s team designed a unique approach where the gold nanocube serves a dual purpose: it imprints the quantum emitter on the chip and it acts as an antenna around it. By creating the quantum emitters in between the gold nanocube and mirror, Strauf left a five-nanometer narrow gap – 20,000 times smaller than the width of a sheet of paper.
“This tiny space between the mirror and nanocube creates an optical antenna that funnels all the photons into that five-nanometer gap, thereby concentrating all the energy” says Strauf. “Essentially, it provides the necessary boost for the single photons to be emitted rapidly from the defined location and in the desired direction.”
To further improve the efficiency of the quantum light sources, Strauf teamed up with Katayun Barmak and James Hone, of Columbia University, who developed a technique for growing semiconductor crystals that are nearly free of defects. Using these unique crystals, Stevens’ graduate student Yue Luo built rows of quantum emitters on a chip by stretching the atom-thin material over the nanocubes. The nanoantennas are formed by attaching the mirror, on the bottom side of the nanocube.
The result: a record-high firing of 42 million single photons per second; in other words, every second trigger created a photon on demand, compared to only one in 100 triggers previously.
Though tiny, the emitters are remarkably tough. “They’re astonishingly stable,” Strauf says. “We can cool them and warm them and disassemble the resonator and reassemble it, and they still work.” Most quantum emitters must be kept chilled to -273°C but the new technology works up to -70°C. “We’re not yet at room temperature,” says Strauf, “but current experiments show that it’s feasible to get there.”
Learn more: Researchers Create First Scalable Platform for On-chip Quantum Light Sources
The Latest on: Quantum light sources
via Google News
The Latest on: Quantum light sources
- Cosmic Buckyballs Could Be The Source of Mysterious Infrared Lighton August 2, 2022 at 11:15 am
Scientists may have just tracked down the source of some mysterious infrared glows detected emanating from stars and clouds of interstellar dust and gas.
- New finding about nickelate superconductors makes waveson August 2, 2022 at 2:02 am
A new study shows that nickel oxide superconductors, which can conduct electricity with no loss at higher temperatures than conventional superconductors, contain a type of quantum matter called charge ...
- Researchers develop miniature lens for trapping atomson August 1, 2022 at 10:31 am
Atoms are notoriously difficult to control. They zigzag like fireflies, tunnel out of the strongest containers and jitter even at temperatures near absolute zero.
- Here are 23 startups in areas like AI, robotics, and quantum primed to take off in Europe's $711 billion deep tech industry, according to VCson July 29, 2022 at 3:20 am
Startups in areas such as AI and quantum computing are attracting more capital as VCs eye up founders that can drive next-generation innovation.
- Quantum Computing Has Arrivedon July 26, 2022 at 5:30 am
Just as those technical advancements have become engrained in countless global industries and cultures, quantum computing has the potential to represent the next technological breakthrough. Bringing ...
- Ribbon-cutting ceremony spotlights the Advanced Photon Source’s game-changing long beamlineson July 25, 2022 at 2:27 pm
The technology housed in the new Long Beamline Building will lead to more efficient solar cells, longer-lasting batteries, more durable materials for airplanes and much more.
- A new leap in understanding nickel oxide superconductorson July 25, 2022 at 12:45 pm
Researchers discover that nickel oxide superconductors contain a phase of quantum matter, known as charge density waves, that's common in other unconventional superconductors. In other ways, though, ...
- New leap in understanding nickel oxide superconductorson July 25, 2022 at 9:34 am
A new study shows that nickel oxide superconductors, which conduct electricity with no loss at higher temperatures than conventional superconductors do, contain a type of quantum matter called charge ...
- Quantum models reveal electronic properties of amorphous carbonon July 25, 2022 at 2:01 am
When carbon atoms stack into a perfectly repeating three-dimensional crystal, they can form precious diamonds. Arranged another way, in repetitive flat sheets, carbon makes the shiny gray graphite ...
via Bing News