Graduate student Tyler Fulton prepares samples of small molecules in a lab at Caltech.
Credit: Caltech
UCLA/Caltech team uncovers a new and simple way to learn the structures of small molecules
In a new study that one scientist called jaw-dropping, a joint UCLA/Caltech team has shown that it is possible to obtain the structures of small molecules, such as certain hormones and medications, in as little as 30 minutes. That’s hours and even days less than was possible before.
The team used a technique called micro-electron diffraction (MicroED), which had been used in the past to learn the 3-D structures of larger molecules, specifically proteins. In this new study, the researchers show that the technique can be applied to small molecules, and that the process requires much less preparation time than expected. Unlike related techniques—some of which involve growing crystals the size of salt grains—this method, as the new study demonstrates, can work with run-of-the-mill starting samples, sometimes even powders scraped from the side of a beaker.
“We took the lowest-brow samples you can get and obtained the highest-quality structures in barely any time,” says Caltech professor of chemistry Brian Stoltz, who is a co-author on the new study, published in the journal ACS Central Science. “When I first saw the results, my jaw hit the floor.” Initially released on the pre-print server Chemrxiv in mid-October, the article has been viewed more than 35,000 times.
The reason the method works so well on small-molecule samples is that while the samples may appear to be simple powders, they actually contain tiny crystals, each roughly a billion times smaller than a speck of dust. Researchers knew about these hidden microcrystals before, but did not realize they could readily reveal the crystals’ molecular structures using MicroED. “I don’t think people realized how common these microcrystals are in the powdery samples,” says Stoltz. “This is like science fiction. I didn’t think this would happen in my lifetime—that you could see structures from powders.”
This movie is an example of electron diffraction (MicroED) data collection, in which electrons are fired at a nanocrystal while being continuously rotated. Data from the movie are ultimately converted to a 3-D chemical structure. Credit: UCLA/Caltech
The results have implications for chemists wishing to determine the structures of small molecules, which are defined as those weighing less than about 900 daltons. (A dalton is about the weight of a hydrogen atom.) These tiny compounds include certain chemicals found in nature, some biological substances like hormones, and a number of therapeutic drugs. Possible applications of the MicroED structure-finding methodology include drug discovery, crime lab analysis, medical testing, and more. For instance, Stoltz says, the method might be of use in testing for the latest performance-enhancing drugs in athletes, where only trace amounts of a chemical may be present.
“The slowest step in making new molecules is determining the structure of the product. That may no longer be the case, as this technique promises to revolutionize organic chemistry,” says Robert Grubbs, Caltech’s Victor and Elizabeth Atkins Professor of Chemistry and a winner of the 2005 Nobel Prize in Chemistry, who was not involved in the research. “The last big break in structure determination before this was nuclear magnetic resonance spectroscopy, which was introduced by Jack Roberts at Caltech in the late ’60s.”
Like other synthetic chemists, Stoltz and his team spend their time trying to figure out how to assemble chemicals in the lab from basic starting materials. Their lab focuses on such natural small molecules as the fungus-derived beta-lactam family of compounds, which are related to penicillins. To build these chemicals, they need to determine the structures of the molecules in their reactions—both the intermediate molecules and the final products—to see if they are on the right track.
One technique for doing so is X-ray crystallography, in which a chemical sample is hit with X-rays that diffract off its atoms; the pattern of those diffracting X-rays reveals the 3-D structure of the targeted chemical. Often, this method is used to solve the structures of really big molecules, such as complex membrane proteins, but it can also be applied to small molecules. The challenge is that to perform this method a chemist must create good-sized chunks of crystal from a sample, which isn’t always easy. “I spent months once trying to get the right crystals for one of my samples,” says Stoltz.
Another reliable method is NMR (nuclear magnetic resonance), which doesn’t require crystals but does require a relatively large amount of a sample, which can be hard to amass. Also, NMR provides only indirect structural information.
Before now, MicroED—which is similar to X-ray crystallography but uses electrons instead of X-rays—was mainly used on crystallized proteins and not on small molecules. Co-author Tamir Gonen, an electron crystallography expert at UCLA who began developing the MicroED technique for proteins while at the Howard Hughes Medical Institute in Virginia, said that he only started thinking about using the method on small molecules after moving to UCLA and teaming up with Caltech.
“Tamir had been using this technique on proteins, and just happened to mention that they can sometimes get it to work using only powdery samples of proteins,” says Hosea Nelson (PhD ’13), an assistant professor of chemistry and biochemistry at UCLA. “My mind was blown by this, that you didn’t have to grow crystals, and that’s around the time that the team started to realize that we could apply this method to a whole new class of molecules with wide-reaching implications for all types of chemistry.”
The team tested several samples of varying qualities, without ever attempting to crystallize them, and were able to determine their structures thanks to the samples’ ample microcrystals. They succeeded in getting structures for ground-up samples of the brand-name drugs Tylenol and Advil, and they were able to identify distinct structures from a powdered mixture of four chemicals.
The UCLA/Caltech team says it hopes this method will become routine in chemistry labs in the future.
“In our labs, we have students and postdocs making totally new and unique molecular entities every day,” says Stoltz. “Now we have the power to rapidly figure out what they are. This is going to change synthetic chemistry.”
Learn more:Â From Beaker to Solved 3-D Structure in Minutes
The Latest on: Small molecules
via Google News
The Latest on: Small molecules
- Researchers harness the power of carbenes to fabricate drugs more easily and more safelyon August 4, 2022 at 1:06 pm
Despite being some of the most versatile building blocks in organic chemistry, compounds called carbenes can be too hot to handle. In the lab, chemists often avoid using these highly reactive ...
- New research digs into the genetic drivers of heart failure, with an eye to precision treatmentson August 4, 2022 at 11:00 am
A new study exploring the genetic drivers of heart failure raises the possibility that some of the molecular pathways that lead to the common condition could be precisely targeted.
- Embracing the Renaissance of Small Molecule Drug Discoveryon August 4, 2022 at 9:32 am
Pharma companies may benefit from meeting challenges and embracing small molecule drug discovery. With biologics dominating headlines, one might be tempted to think that small molecule discovery is ...
- Scientists discover light as 'glue' in a loosely linked moleculeon August 4, 2022 at 6:11 am
According to a new study, light appears to be able to act as a sort of 'glue' between atoms to forms loosely bonded molecules.
- The Renaissance of Small Molecule Drug Discoveryon August 3, 2022 at 7:51 am
In 2021, 62% of new drug approvals were for small molecules, including new treatments for HIV, cancer, infections, heart and kidney disease, and more.
- Ipsen Announces Results from Phase III RESILIENT Trial Evaluating Onivyde® in Second-Line Monotherapy for Small Cell Lung Canceron August 3, 2022 at 1:30 am
La Merie Publishing prepares brief and full reports as well as competitor analysis reports, the latter in a tabulated format with structured listings of industry-relevant data. One of our top-selling.
- Small Molecule API Market Valuation Worth USD 279.68 Billion by 2027 at 7% CAGR - Report by Market Research Future (MRFR)on August 1, 2022 at 9:34 pm
Application (Cardiovascular, Oncology, Diabetes, Immunological Disorders and others), Manufacturing Method (In-House and Contract) and Region (North America, Europe, Asia-Pacific and the Middle East & ...
- Small molecule prevents tumour cells from spreadingon July 27, 2022 at 9:47 am
Leiden chemists, together with colleagues at the University of York (UK) and Technion (Israel) have discovered a small, sugar-like molecule that maintains the integrity of tissue around a tumor during ...
- What do molecules look like?on July 21, 2022 at 12:04 am
Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to [email protected] do molecules look like? – Justice B., age 6, ...
via Bing News