
The ACS Applied Nano Materials cover illustrates a new approach for creating helix-rich RSF films based on molecular interactions between the protein molecules and carboxyl-functionalized surfaces of a small quantity of added carbon nanotubes (CNTs). Local heating of CNTs using microwave irradiation (depicted here as glowing red) then leads to the formation of helical conformations in fibroins near the CNTs. (Randall McKenzie/McKenzie Illustrations)
Pitt researchers find that nanotube interactions with silk fibroins hold the key to developing flexible, degradable electronics
The silk fibers produced by Bombyx mori, the domestic silkworm, has been prized for millennia as a strong yet lightweight and luxurious material. Although synthetic polymers like nylon and polyester are less costly, they do not compare to silk’s natural qualities and mechanical properties. And according to research from the University of Pittsburgh’s Swanson School of Engineering, silk combined with carbon nanotubes may lead to a new generation of biomedical devices and so-called transient, biodegradable electronics.
The study, “Promoting Helix-Rich Structure in Silk Fibroin Films through Molecular Interactions with Carbon Nanotubes and Selective Heating for Transparent Biodegradable Devices” (DOI: 10.1021/acsanm.8b00784), was featured on the Oct. 26 cover of the American Chemistry Society journal Applied Nano Materials.
“Silk is a very interesting material. It is made of natural fibers that humans have been using for thousands of years to make high quality textiles, but we as engineers have recently started to appreciate silk’s potential for many emerging applications such as flexible bioelectronics due to its unique biocompatibility, biodegradability and mechanical flexibility,” noted Mostafa Bedewy, assistant professor of industrial engineering at the Swanson School and lead author of the paper. “The issue is that if we want to use silk for such applications, we don’t want it to be in the form of fibers. Rather, we want to regenerate silk proteins, called fibroins, in the form of films that exhibit desired optical, mechanical and chemical properties.”
As explained by the authors in the video below, these regenerated silk fibroins (RSFs) however typically are chemically unstable in water and suffer from inferior mechanical properties, owing to the difficulty in precisely controlling the molecular structure of the fibroin proteins in RSF films. Bedewy and his NanoProduct Lab group, which also work extensively on carbon nanotubes (CNTs), thought that perhaps the molecular interactions between nanotubes and fibroins could enable “tuning” the structure of RSF proteins.
“One of the interesting aspects of CNTs is that, when they are dispersed in a polymer matrix and exposed to microwave radiation, they locally heat up,” Dr. Bedewy explained. “So we wondered whether we could leverage this unique phenomenon to create desired transformations in the fibroin structure around the CNTs in an “RSF-CNT” composite.”
According to Dr. Bedewy, the microwave irradiation, coupled with a solvent vapor treatment, provided a unique control mechanism for the protein structure and resulted in a flexible and transparent film comparable to synthetic polymers but one that could be both more sustainable and degradable. These RSF-CNT films have potential for use in flexible electronics, biomedical devices and transient electronics such as sensors that would be used for a desired period inside the body ranging from hours to weeks, and then naturally dissolve.
“We are excited about advancing this work further in the future, as we are looking forward to developing the science and technology aspects of these unique functional materials,” Dr. Bedewy said. “ From a scientific perspective, there is still a lot more to understand about the molecular interactions between the functionalization on nanotube surfaces and protein molecules. From an engineering perspective, we want to develop scalable manufacturing processes for taking cocoons of natural silk and transforming them into functional thin films for next generation wearable and implantable electronic devices.”
Learn more: Making a Transparent Flexible Material of Silk and Nanotubes
The Latest on: Degradable electronics
[google_news title=”” keyword=”degradable electronics” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Degradable electronics
- The Best Black Friday Home And Pet Deals Available Right Nowon November 26, 2023 at 6:45 am
Home is where the heart is. We spend hours of our time at home sleeping, eating and recharging, so you deserve to make your space a true haven. That’s why stocking up on items for your home during ...
- TVS Electronics Share Priceon November 24, 2023 at 1:02 pm
TVS Electronics Ltd., incorporated in the year 1995, is a Small Cap company (having a market cap of Rs 639.80 Crore) operating in IT - Hardware sector. TVS Electronics Ltd. key Products/Revenue ...
- Sustainable Electronics and Deviceson November 10, 2023 at 12:09 pm
Topics of interest include (but are not limited to): - Decomposable or degradable devices, sensors, processors, or communication components. - Circular approaches to device manufacturing or ...
- Electronics recycling - Frequently asked questionson January 19, 2022 at 4:26 pm
Electronics like televisions, computers and printers can be recycled in Calgary in an environmentally sound and safe way instead of being buried in the landfill. For a list of electronics recycling ...
- Electronics recycling for residentson July 31, 2020 at 8:44 pm
If you have large volumes of electronics to recycle, see a list of electronics processors that may be able to accept electronics items. Visit Electronics Recycling for Business. Learn more about how ...
- Degradable Tape Serieson June 19, 2020 at 3:08 pm
3.Double sided tape:(1)double sided tissue tape;(2)double sided PET tape; 4.Degradable tape:(1)degradable BOPP packing tape;(2)degradable LLDPE stretch film 5.Paper tape:(1)masking paper tape;(2 ...
- Degradable pots could help resolve disposal issueson November 10, 2018 at 6:12 am
In October, HRI filed a joint HRI/USDA-ARS patent application in support of their collaborative research efforts to develop degradable plastic resins. The Biodegradable Products from Poultry Feathers ...
- Ban the use of degradable plastics in Canadaon March 28, 2016 at 7:28 pm
WHEREAS biodegradability is the ability of a material to be utilized as a carbon source by living microorganisms and converted safely into carbon dioxide, biomass and water (10), fragmentation of ...
- Popular Electronics Magazine Archive Onlineon December 2, 2014 at 8:41 pm
They began publishing Popular Electronics magazine in 1954, and it soon became one of the best-selling DIY electronics magazines. And now you can relive those bygone days of yore by browsing ...
via Bing News