A computer model of the atomic structure of one of the new carbides. The jumbled mess of carbon and five metal elements gives stability to the overall structure.
Computational simulations predict new class of carbides that could disrupt industries from machinery to aerospace
Materials scientists at Duke University and UC San Diego have discovered a new class of carbides expected to be among the hardest materials with the highest melting points in existence. Made from inexpensive metals, the new materials may soon find use in a wide range of industries from machinery and hardware to aerospace.
A carbide is traditionally a compound consisting of carbon and one other element. When paired with a metal such as titanium or tungsten, the resulting material is extremely hard and difficult to melt. This makes carbides ideal for applications such as coating the surface of cutting tools or parts of a space vehicle.
A small number of complex carbides containing three or more elements also exist, but are not commonly found outside of the laboratory or in industrial applications. This is mostly due to the difficulties of determining which combinations can form stable structures, let alone have desirable properties.
A team of materials scientists at Duke University and UC San Diego have now announced the discovery of a new class of carbides that join carbon with five different metallic elements at once. The results appear online on November 26 in the journal Nature Communications.
Achieving stability from the chaotic mixture of their atoms rather than orderly atomic structure, these materials were computationally predicted to exist by the researchers at Duke University and then successfully synthesized at UC San Diego.
“These materials are harder and lighter in weight than current carbides,” said Stefano Curtarolo, professor of mechanical engineering and materials science at Duke. “They also have very high melting points and are made out of relatively cheap material mixtures. This combination of attributes should make them very useful to a wide range of industries.”
A microscopic look at the structures formed in two of the potential new carbides. The material on the right forms large blocks of similar structures making it unstable, while the material on the right forms a broad range of structures, giving it stability.
When students learn about molecular structures, they’re shown crystals like salt, which resembles a 3-D checkerboard. These materials gain their stability and strength through regular, ordered atomic bonds where the atoms fit together like pieces of a jigsaw puzzle.
Imperfections in a crystalline structure, however, can often add strength to a material. If cracks start to propagate along a line of molecular bonds, for example, a group of misaligned structures can stop it in its tracks. Hardening solid metals by creating the perfect amount of disorder is achieved through a process of heating and quenching called annealing.
The new class of five-metal carbides takes this idea to the next level. Jettisoning any reliance on crystalline structures and bonds for their stability, these materials rely completely on disorder. While a pile of baseballs won’t stand on its own, a pile of baseballs, shoes, bats, hats and gloves just might.
The difficulty lies in predicting which combination of elements will stand firm. Trying to make new materials is expensive and time-consuming. Computing atomic interactions through first principle simulations is even more so. And with five slots for metallic elements and 91 to choose from, the number of potential recipes quickly becomes daunting.
“To figure out which combinations will mix well, you have to do a spectral analysis based on entropy,” said Pranab Sarker, a postdoctoral associate in Curtarolo’s lab and one of the first authors of the paper. “Entropy is incredibly time-consuming and difficult to calculate by building a model atom-by-atom. So we tried something different.”
The team first narrowed the field of ingredients to eight metals known to create carbide compounds with high hardness and melting temperatures. They then calculated how much energy it would take for a potential five-metal carbide to form a large set of random configurations.
If the results were spread far apart, it indicated that the combination would likely favor a single configuration and fall apart — like having too many baseballs in the mix. But if there were many configurations tightly clumped together, it indicated the material would likely form many different structures all at once, providing the disorder needed for structural stability.
The group then tested its theory by getting colleague Kenneth Vecchio, professor of NanoEngineering at UC San Diego, to attempt to actually make nine of the compounds. This was done by combining the elements in each recipe in a finely powdered form, pressing them at temperatures up to 4,000 degrees Fahrenheit and running 2000 Amps of current directly through them.
“Learning to process these materials was a difficult task,” said Tyler Harrington, a PhD student in Vecchio’s lab and co-first author of the paper. “They behave differently than any materials that we’ve ever dealt with, even the traditional carbides.”
They chose the three recipes their system deemed most likely to form a stable material, the two least likely, and four random combinations that scored in between. As predicted, the three most likely candidates were successful while the two least likely were not. Three of the four intermediate scorers also formed stable structures.
While the new carbides are all likely to have desirable industrial properties, one improbable combination stood out — a combination of molybdenum, niobium, tantalum, vanadium and tungsten called MoNbTaVWC5 for short.
“Getting this set of elements to combine is basically like trying to squeeze together a bunch of squares and hexagons,” said Cormac Toher, an assistant research professor in Curtarolo’s laboratory. “Going on intuition alone, you’d never think that combination would be feasible. But it turns out that the best candidates are actually counterintuitive.”
“We don’t know its exact properties yet because it hasn’t been fully tested,” said Curtarolo. “But once we get it into the laboratory in the next couple of months, I wouldn’t be surprised if it turned out to be the hardest material with the highest melting point ever made.”
“This collaboration is a team of researchers focused on demonstrating the unique and potentially paradigm-changing implications of this new approach,” said Vecchio. “We are using innovative approaches to first-principles modeling combined with state-of-the-art synthesis and characterization tools to provide the integrated ‘closed-loop’ methodology so necessary for advanced materials discovery.”
Learn more: Disordered Materials Could Be Hardest, Most Heat-Tolerant Ever
The Latest on: Materials discovery
via Google News
The Latest on: Materials discovery
- £3.5m seed funding for life sciences company set to ‘revolutionise’ drug discoveryon August 2, 2022 at 2:13 am
Imperagen will use the £3.5m seed round of investment led by IQ Capital and Northern Gritstone, to support the development and validation of its ultra-fast enzyme engineering platform. Its ambition is ...
- Johnny Depp-Amber Heard Trial Documents Unsealed: Marilyn Manson Texts, Salacious Photos And Other Material That The Jury Didn’t See Or Hearon August 1, 2022 at 11:54 pm
The Johnny Depp-Amber Heard trial captivated viewers with a peek into the stormy marriage of two movie stars but, believe it or not, the proceedings could have been even more sensational. The ...
- Here is why Warner Bros. Discovery Inc. (WBD) recent weekly performance of 2.39% shouldn’t bother you at Allon August 1, 2022 at 10:21 am
Warner Bros. Discovery Inc. (WBD) is priced at $15.00 after the most recent trading session. At the very opening of the session, the stock price was $15.35 and reached a high price of $15.40, prior to ...
- Discovery World Gala features fireworks, tribute to Michael Cudahy: Slideshowon August 1, 2022 at 7:27 am
Nearly 400 Milwaukee-area business and community leaders turned out July 30 for the Discovery World Gala, which featured fireworks over Lakeshore State Park along the city's lakefront and a tribute to ...
- "OpenDEL®3.0 - DRUG DISCOVERY PARTNER" webinar offered by HitGen and Endpoints News coming up on Thursday 4th Auguston August 1, 2022 at 7:00 am
DRUG DISCOVERY PARTNER" webinar will be jointly held by HitGen Inc. and Endpoints News on Thursday 4th August, to present you with a high-quality DEL product with all DEL information sharing and ...
- New discovery of panda species which may have been Europe's laston August 1, 2022 at 12:37 am
Lumbering through the forested wetlands of Bulgaria around six million years ago, a new species of panda has been uncovered by scientists who state it is currently the last known and "most evolved" ...
- How to stream ‘Naked and Afraid XL: Frozen’ premiere on Discoveryon July 31, 2022 at 11:11 am
Discovery says this this “Frozen” spin-off is “one of the most punishing locations ever attempted” and “these elite survivalists will be tested like never before,” and “will arrive with no shoes, no ...
- A new discovery may explain the origin of life on Earthon July 29, 2022 at 8:02 am
New research outlines the materials and reactions that could have sparked life on Earth. It is the simplest hypothesis yet.
- AI tackles the challenge of materials structure predictionon July 28, 2022 at 7:05 am
Researchers have designed a machine learning method that can predict the structure of new materials with five times the efficiency of the current standard, removing a key roadblock in developing ...
via Bing News