Switching the silicon in solar panels, which change the color from blue to black, lower the cost of solar power by more than 10 percent. Photo credit: Aino Laine, Aalto University.
Engineers at Michigan Technological University and Aalto University find that switching silicon in solar cells drops production costs for this renewable energy source by more than 10 percent.
At the end of one of the hottest summers on record, as fights rage on about how to power homes, renewable solar energy continues to present as an option that does not significantly add greenhouse gases to the environment in exchange for lighting and cooling our homes. And it’s just been given another edge through material science.
In a new study published in Energies, researchers found a way to reduce production costs of solar cells by more than 10 percent.
“Improving cost per unit power at the cell level can have massive effects downstream,” says Joshua Pearce, professor of material sciences and electrical engineering at Michigan Tech. Already, he says, costs of solar energy are comparable to conventional forms of electricityand is the fastest growing energy source. This 10 percent drop should push solar to the forefront even faster.
Switching the Silicon Used in Solar Cells for Renewable Energy Drops Costs
Silicon is the standard light-capturing material used in solar photovoltaic (PV) cells. It comes in two main forms: perfect crystals that cost more and produce higher efficiencies, and multicrystalline silicon that cost less, but offer lower efficiencies. With common etching to reduce reflected light, both types still lose some light, which is what gives most solar panels their blue color.
Researchers already knew that nano-texturing silicon with dry etching makes black silicon (black-Si) more efficient at capturing light than standard etching treatments. It has no color because the dry etching process takes a normally flat silicon surface and “etches it into a forest of nanoscale needles,” Pearce says. “Those needles grab the light and don’t let it get away. It’s like looking into the eyes of Darth Vader.”
Normally, such a high surface area with many surface defects would hurt electrical performance, but researchers at Aalto University found that when the silicon is also treated with an appropriate atomic layer deposition (ALD) coating, the effects of surface defects are mitigated.
Typical thinking has been that the cost of black-Si cells from dry etching and ALD are too expensive for practical use, especially in an industry where, Pearce says, “margins are extremely tight. Everyone’s trying to push costs as low as possible.”
However, the results of their study shocked even Pearce. While researchers found that production of individual black-Si passive emitter rear cells (PERC) were between 15.8 and 25.1 percent more expensive than making conventional cells, they also found that the efficiency gains and the ability to go to the less-expensive multicrystalline silicon starting material far outweighed those extra costs: overall the cost per unit power dropped by 10.8 percent.
The Future of Renewables and Solar Energy Production through Material Science
Black is not only better than blue when it comes to solar panels. The improvements could start to beat out renewables’ top energy competitor in the climate change arena.
“For the people that think coal technology is going to be able to compete with solar, they should know solar costs are still coming down. Most coal companies are already, or near, bankrupt now. There’s no way coal’s going to be able to compete with solar in the future.”
“This study points to where the future is going to go in PV manufacturing,” he says, “and what countries might want to do to give themselves a competitive advantage.”
Teaming Up Across the Atlantic for Solar Energy Efficiency
Pearce completed this study while on sabbatical as a Fulbright distinguished chair at Aalto University in Finland. He worked with the Hele Savin’s Electron Physics Group and had access to their data on these processes. Researchers were also able to get information on manufacturing costs from companies, which is not public, but were allowed to use for this study, along with published literature on solar cells.
While the spot price for solar cells may change day by day–or even by hour–the results still hold. “That’s 10 percent decline between cell types from whatever the number is that day,” he says. This is because the comparisons were made on relative costs, not absolute costs. That’s also why arbitrarily fluctuating tariffs were not factored into the calculations.
What’s Next for Solar Energy and Renewables
Pearce says that while the production process can still be optimized to pull out a few more percentage points of efficiency, the next step for this study is to be used by policy makers to accelerate PV manufacturing. For a country like China, which already dominates global PV manufacturing, “to make this relatively small change is pretty trivial.” The European Union, which currently makes a lot of the manufacturing equipment, should also “look carefully at scaling up deep reactive ion etching and ALD tools to meet the needs of the rapidly expanding PV market,” says Pearce. He hopes that countries like the U.S., which used to dominate the solar field, will use this data at a policy level to leap frog international manufacturers, and invest in producing the new machines to manufacture these types of solar cells.
“I don’t know which technology will end up being the one to dominate the solar field,” he said; however, “the study shows the clear economic impetus to move in the direction of dry-etched black silicon PERC that wasn’t there before.”
Learn more: Black and Blue: Different Silicon Drops Cost of Solar
The Latest on: Solar cells
via Google News
The Latest on: Solar cells
- How a 2019 Maine law spurred $100 million in solar investmenton April 11, 2021 at 1:00 am
With community solar, developers sign up customers who want to offset their bills with solar energy but don’t want or can’t afford to buy and install panels. In a typical arrangement, electric ...
- NASA’s Lucy Spacecraft Stretches Its Wings in Successful Solar Panel Deployment Teston April 10, 2021 at 9:54 pm
At 24 feet (7.3 meters) across each, Lucy’s two solar panels underwent initial deployment tests in January 2021. In this photo, a technician at Lockheed Martin Space in Denver, Colorado, inspects one ...
- If You Invested $1000 in Canadian Solar a Decade Ago, This is How Much It'd Be Worth Nowon April 9, 2021 at 5:57 am
Ontario, Canada-based Canadian Solar Inc. (CSIQ) is a vertically integrated manufacturer of silicon ingots, wafers, cells, solar modules (panels) and custom-designed solar power applications.
- Biden Fights a New Cold War With Solar Panelson April 9, 2021 at 4:00 am
That’s a lot to ask of a solar panel.” Kevin Book of ClearView Energy Partners was talking about the recent hawkish turn in the Biden administration’s cleantech rhetoric. President Joe Biden — and his ...
- Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cellson April 8, 2021 at 2:10 pm
Formamidinium lead triiodide (FAPbI 3) perovskite solar cells (PSCs) are mainly fabricated by sequentially coating lead iodide and formamidinium iodide, or by coating a solution in which all ...
- Carbon dots from human hair boost solar cellson April 8, 2021 at 6:15 am
Perovskites solar cells, a relatively new photovoltaic technology, are seen as the best PV candidate to deliver low-cost, highly efficient solar electricity in coming years. They have proven to be ...
- Carbon dots made from hair boost stability of perovskite solar cellson April 8, 2021 at 12:04 am
Over the past decade or so, gains in efficiency have seen perovskite solar cells become a highly promising technology in the realm of renewable energy, quickly coming to match or even outdo the ...
- Carbon nanodots from human hair boost solar cellson April 8, 2021 at 12:03 am
In a study published in the Journal of Materials Chemistry A ("Self-assembled carbon dot-wrapped perovskites enable light trapping and defect passivation for efficient and stable perovskite solar ...
- NASA Lucy spacecraft solar panel deployment test goes off without a hitchon April 7, 2021 at 6:03 am
NASA is currently working on a spacecraft called Lucy and has announced that it has successfully completed a solar panel deployment test. Lucy has completed thermal vacuum testing of both solar panels ...
- India approves incentives for solar panel, white goods production - ministeron April 7, 2021 at 2:20 am
NEW DELHI (Reuters) - India’s cabinet on Wednesday approved production-linked incentives for the manufacturing of high-efficiency solar panels and white goods including air conditioners, a minister ...
via Bing News