
A multidisciplinary team at NUS BIGHEART has developed enVision – a portable, easy-to-use and inexpensive device for quick and accurate screening of diseases.
Test results are denoted by a colour change and could be further analysed by a smartphone app, making it attractive as a point-of-care diagnostic device
A multidisciplinary team of researchers at the National University of Singapore (NUS) has developed a portable, easy-to-use device for quick and accurate screening of diseases. This versatile technology platform called enVision (enzyme-assisted nanocomplexes for visual identification of nucleic acids) can be designed to detect a wide range of diseases – from emerging infectious diseases (e.g. Zika and Ebola) and high-prevalence infections (e.g. hepatitis, dengue, and malaria) to various types of cancers and genetic diseases.
enVision takes between 30 minutes to one hour to detect the presence of diseases, which is two to four times faster than existing infection diagnostics methods. In addition, each test kit costs under S$1 – 100 times lower than the current cost of conducting similar tests.
“The enVision platform is extremely sensitive, accurate, fast, and low-cost. It works at room temperature and does not require heaters or special pumps, making it very portable. With this invention, tests can be done at the point-of-care, for instance in community clinics or hospital wards, so that disease monitoring or treatment can be administered in a timely manner to achieve better health outcomes,” said team leader Assistant Professor Shao Huilin from the Biomedical Institute for Global Health Research and Technology (BIGHEART) and Department of Biomedical Engineering at NUS. Asst Prof Shao is also an investigator with the Institute of Molecular and Cell Biology (IMCB) under the Agency for Science, Technology and Research (A*STAR).

via NUS
Superior sensitivity and specificity compared to clinical gold standard
The research team used the human papillomavirus (HPV), the key cause of cervical cancer, as a clinical model to validate the performance of enVision. In comparison to clinical gold standard, this novel technology has demonstrated superior sensitivity and specificity.
“enVision is not only able to accurately detect different subtypes of the same disease, it is also able to spot differences within a specific subtype of a given disease to identify previously undetectable infections,” Asst Prof Shao added.
Bringing the lab to the patient
In addition, test results are easily visible – the assay turns from colourless to brown if a disease is present – and could also be further analysed using a smartphone for quantitative assessment of the amount of pathogen present. This makes enVision an ideal solution for personal healthcare and telemedicine.
“Conventional technologies – such as tests that rely on polymerase chain reaction to amplify and detect specific DNA molecules – require bulky and expensive equipment, as well as trained personnel to operate these machines. With enVision, we are essentially bringing the clinical laboratory to the patient. Minimal training is needed to administer the ,test and interpret the results, so more patients can have access to effective, lab-quality diagnostics that will substantially improve the quality of care and treatment,” said Dr Nicholas Ho, a researcher from NUS BIGHEART and A*STAR’s IMCB, and co-first author of the study.
Versatile point-of-care diagnostic device
In this study, Asst Prof Shao and her team developed patented DNA molecular machines that can recognise genetic material of different diseases and perform different functions. These molecular machines form the backbone of the enVision platform.
The novel platform adopts a ‘plug-and-play’ modular design and uses microfluidic technology to reduce the amount of samples and biochemical reagents required as well as to optimise the technology’s sensitivity for visual readouts.
“The enVision platform has three key steps – target recognition, target-independent signal enhancement, and visual detection. It employs a unique set of molecular switches, composed of enzyme-DNA nanostructures, to accurately detect, as well as convert and amplify molecular information into visible signals for disease diagnosis,” explained Dr Lim Geok Soon, a researcher from NUS BIGHEART and A*STAR’s IMCB, and co-first author of the study.
Each test is housed in a tiny plastic chip that is preloaded with a DNA molecular machine that is designed to recognise disease-specific molecules. The chip is then placed in a common signal cartridge that contains another DNA molecular machine responsible for producing visual signals when disease-specific molecules are detected.
Multiple units of the same test chip – to test different patient samples for the same disease – or a collection of test chips to detect different diseases could be mounted onto the common cartridge.
“Having a target-independent signal enhancement step frees up the design possibilities for the recognition element. This allows enVision to be programmed as a biochemical computer with varying signals for different combinations of target pathogens. This can be very useful to monitor populations for multiple diseases like dengue and malaria simultaneously, or testing for highly mutable pathogens like the flu with high sensitivity and specificity,” said Dr Ho.
Future work
Asst Prof Shao and her team took about a year and a half to develop the enVision platform. Building on the current work, the research team is developing a sample preparation module – for extraction and treatment of DNA material – to be integrated with the enVision platform to enhance point-of-care application. In addition, the research team foresees that the smartphone app could include more advanced image correction and analysis algorithms to further improve its performance for real-world application.
This research work was published in prestigious scientific journal Nature Communications in August 2018, and featured as an Editors’ Highlight by the journal.
Learn more: New test kit invented by NUS researchers enables quick, accurate, and inexpensive screening of diseases
The Latest on: Disease diagnostic tool
via Google News
The Latest on: Disease diagnostic tool
- Quest Diagnostics develops blood test to determine immunity to COVID-19on February 24, 2021 at 10:00 am
The test will determine if an individual has developed immunity to the virus from being vaccinated or having the virus ...
- Scailyte and Volv Global Announce Strategic Partnership to Accelerate Rare Disease Patient Diagnosison February 24, 2021 at 6:01 am
Scailyte and Volv Global announce strategic partnership Rare oncologic & immune disease diagnostics BASEL-CITY, Switzerland - February 24, 2021 - (Newswire.com) Artificial Intelligence (AI)-driven ...
- Medical And Diagnostic Laboratory Services Global Market Report 2021: COVID 19 Impact and Recovery to 2030on February 24, 2021 at 4:33 am
Major companies in the medical and diagnostic laboratory services market include Quest Diagnostics Inc; Sonic Healthcare Limited; Eurofins; OPKO Health Inc and Medical And Diagnostic Laboratory ...
- Quest Diagnostics Introduces New COVID-19 Semi-quantitative Serology Test Serviceon February 24, 2021 at 4:30 am
Quest Diagnostics (NYSE: DGX), the world's leading provider of diagnostic information services, today introduced a new COVID-19 testing service that aids in providing insight into an individual's ...
- Cytox Launches genoSCORETM-LAB Test to Predict the Risk of Developing Alzheimer’s Diseaseon February 23, 2021 at 11:07 pm
Cytox Ltd, which provides non-invasive, risk assessment and patient stratification tools for Alzheimer's disease (AD) and dementia, announces the launch of its new genetic test, genoSCORETM-LAB, that ...
- Do gluten-free diets provide a cure-all for celiac disease?on February 23, 2021 at 10:18 am
A new study provides insights into the curative effects of gluten-free diets in celiac patients. Results from the proteomics-based research suggests not.
- Genetic tool improves estimation of prostate cancer risk in diverse ethnic/racial groupson February 23, 2021 at 10:08 am
Building upon previous research, an international team led by scientists at University of California San Diego School of Medicine, has validated a more inclusive and comprehensive genetic tool for ...
- IISc Develops AI-Based Tool for Automated Diagnosis of COVID-19 Lung Infectionon February 17, 2021 at 7:33 pm
The software uses neural networks to 'read' the chest CT scans of COVID-19 patients and estimate the damage in their lungs.
- C2N Diagnostics has brought its Alzheimer's blood test to market. Now it wants to expand in St. Louis and beyond.on February 15, 2021 at 3:00 am
However, a new tool has emerged for doctors, thanks to St. Louis-based biotechnology firm C2N Diagnostics. In October, C2N launched a blood test to help doctors screen for Alzheimer’s. C2N bills ...
via Bing News