Bioinspired 3-D structures created in Yum’s lab.
Living organisms expand and contract soft tissues to achieve complex, 3D movements and functions, but replicating those movements with man-made materials has proven challenging.
A University of Texas at Arlington researcher recently published groundbreaking research in Nature Communications that shows promise in finding a solution.
Kyungsuk Yum, an assistant professor in UTA’s Materials Science and Engineering Department, and his doctoral student, Amirali Nojoomi, have developed a process by which 2D hydrogels can be programmed to expand and shrink in a space- and time-controlled way that applies force to their surfaces, enabling the formation of complex 3D shapes and motions.
This process could potentially transform the way soft engineering systems or devices are designed and fabricated. Potential applications for the technology include bioinspired soft robotics, artificial muscles – which are soft materials that change their shapes or move in response to external signals as our muscles do – and programmable matter. The concept is also applicable to other programmable materials.
“We studied how biological organisms use continuously deformable soft tissues such as muscle to make shapes, change shape and move because we were interested in using this type of method to create dynamic 3D structures,” Yum said.
His approach uses temperature-responsive hydrogels with local degrees and rates of swelling and shrinking. Those properties allow Yum to spatially program how the hydrogels swell or shrink in response to temperature change using a digital light 4D printing method he developed that includes three dimensions plus time.
Using this method, Yum can print multiple 3D structures simultaneously in a one-step process. Then, he mathematically programs the structures’ shrinking and swelling to form 3D shapes, such as saddle shapes, wrinkles and cones, and their direction.
He also has developed design rules based on the concept of modularity to create even more complex structures, including bioinspired structures with programmed sequential motions. This makes the shapes dynamic so they can move through space. He also can control the speed at which the structures change shape and thus create complex, sequential motion, such as how a stingray swims in the ocean.
“Unlike traditional additive manufacturing, our digital light 4D printing method allows us to print multiple, custom-designed 3D structures simultaneously. Most importantly, our method is very fast, taking less than 60 seconds to print, and thus highly scalable.”
Yum’s paper, “Bioinspired 3D structures with programmable morphologies and motions,” was published in the Sept. 12 issue of Nature Communications.
The research is an example of data-driven discovery, one of the themes of UTA’s Strategic Plan 2020: Bold Solutions | Global Impact, said Stathis Meletis, chair of the Materials Science and Engineering Department.
“Dr. Yum’s approach to creating programmable 3D structures has the potential to open many new avenues in bioinspired robotics and tissue engineering. The speed with which his approach can be applied, as well as its scalability, makes it a unique tool for future research and applications,” Meletis said.
Learn more: UTA researcher creates hydrogels capable of complex movement
The Latest on: Programmable hydrogels
via Google News
The Latest on: Programmable hydrogels
- Lab Automation 2017on July 27, 2022 at 5:00 pm
The Laboratory Automation 2017 virtual conference is available On-Demand! Laboratory automation is a multi-disciplinary approach benefiting from technologies in the lab that facilitate new and ...
- Nanotechnology in Therapeuticson July 23, 2022 at 5:00 pm
Polymeric nanocarriers in the third group include hydrogels, which offer a water-filled depot for hydrophilic drug encapsulation. Besides being utilized for targeting and raising temperature ...
- News tagged with external stimulion July 20, 2022 at 5:00 pm
Recent advances in pre-programmed architected materials could enable new functions that can evolve in response to their environments or external stimuli, according to Lawrence Livermore National ...
- Bioinspired Materials in Biomedicineon July 18, 2022 at 1:50 am
These gecko adhesive-based bandages led to the launch of a company known as Tissium, which focused on the generation of biomorphic and programmable ... is created from two hydrogel layers and ...
- Deconstructing the mechanics of bone marrow diseaseon July 11, 2022 at 10:12 am
Paulson School of Engineering and Applied Sciences (SEAS), Dana-Farber Cancer Institute (DFCI), and Brigham and Women's Hospital (Brigham), has created a programmable hydrogel-based in vitro model ...
- Deconstructing the mechanics of bone marrow diseaseon July 11, 2022 at 9:26 am
The team developed an alginate-based hydrogel system that mimics the viscoelasticity of natural ECM which allowed them to tune the elasticity independent from other physical and biochemical ...
- Programmable Logic Devices Market Opportunity, Size, Share, Growth, Segmentation, In-depth Analysis Research Report by Foresight to (2022-2029)on June 20, 2022 at 4:13 am
Jun 20, 2022 (The Expresswire) -- Global "Programmable Logic Devices Market" report provides the detailed study of business analysis, competitor landscape, development trends, future scope ...
- Skin Patch Provides Medication That Stickson June 8, 2022 at 5:00 pm
Just slap on its fully programmable, non-invasive ... charge is applied to an iontrophoretic chamber containing a similarly charged medication and hydrogel material. The medication ions, being ...
- Design programmable actuating materials for soft roboticson January 2, 2022 at 1:04 pm
This studentship is funded via a studentship from the China Scholarship Council. CSC is offering a monthly stipend to cover living expenses and QMUL is waving fees and hosting the student. These ...
via Bing News