
University of Minnesota researchers developed a prototype of a 3D-printed device with living cells that could help spinal cord patients restore some function. The size of the device could be custom-printed to fit each patient’s spinal cord. The patient’s own cells would be printed on the guide to avoid rejection in the body.
Credit: University of Minnesota
Engineers and medical researchers at the University of Minnesota have teamed up to create a groundbreaking 3D-printed device that could someday help patients with long-term spinal cord injuries regain some function.
A 3D-printed guide, made of silicone, serves as a platform for specialized cells that are then 3D printed on top of it. The guide would be surgically implanted into the injured area of the spinal cord where it would serve as a type of “bridge” between living nerve cells above and below the area of injury. The hope is that this would help patients alleviate pain as well as regain some functions like control of muscles, bowel and bladder.
The research is published online today in Advanced Functional Materials, a peer-reviewed scientific journal.
“This is the first time anyone has been able to directly 3D print neuronal stem cells derived from adult human cells on a 3D-printed guide and have the cells differentiate into active nerve cells in the lab,” said Michael McAlpine, Ph.D., a co-author of the study and University of Minnesota Benjamin Mayhugh Associate Professor of Mechanical Engineering in the University’s College of Science and Engineering.
“This is a very exciting first step in developing a treatment to help people with spinal cord injuries,” said Ann Parr, M.D., Ph.D., a co-author of the study and University of Minnesota Medical School Assistant Professor in the Department of Neurosurgery and Stem Cell Institute. “Currently, there aren’t any good, precise treatments for those with long-term spinal cord injuries.”
There are currently about 285,000 people in the United States who suffer from spinal cord injuries, with about 17,000 new spinal cord injuries nationwide each year.
In this new process developed at the University of Minnesota over the last two years, researchers start with any kind of cell from an adult, such as a skin cell or blood cell. Using new bioengineering techniques, the medical researchers are able to reprogram the cells into neuronal stem cells. The engineers print these cells onto a silicone guide using a unique 3D-printing technology in which the same 3D printer is used to print both the guide and the cells. The guide keeps the cells alive and allows them to change into neurons. The team developed a prototype guide that would be surgically implanted into the damaged part of the spinal cord and help connect living cells on each side of the injury.
“Everything came together at the right time,” Parr said. “We were able to use the latest cell bioengineering techniques developed in just the last few years and combine that with cutting-edge 3D-printing techniques.”
Even with the latest technology, developing the prototype guides wasn’t easy.
“3D printing such delicate cells was very difficult,” McAlpine said. “The hard part is keeping the cells happy and alive. We tested several different recipes in the printing process. The fact that we were able to keep about 75 percent of the cells alive during the 3D-printing process and then have them turn into healthy neurons is pretty amazing.”
If the next steps are successful, the payoff for this research could be life-changing for those who suffer from spinal cord injuries.
“We’ve found that relaying any signals across the injury could improve functions for the patients,” Parr said. “There’s a perception that people with spinal cord injuries will only be happy if they can walk again. In reality, most want simple things like bladder control or to be able to stop uncontrollable movements of their legs. These simple improvements in function could greatly improve their lives.”
Learn more: New 3D-printed device could help treat spinal cord injuries
The Latest on: Spinal cord injury
via Google News
The Latest on: Spinal cord injury
- Mouse study: gabapentin prevents harmful structural changes in spinal cordon January 26, 2021 at 11:40 am
Research led by The Ohio State University Wexner Medical Center and College of Medicine found that the widely prescribed pain-relief drug gabapentin can prevent harmful structural changes in the ...
- Global Exoskeleton Market Top 3 Trends Propelling the Growth, Outlook Over 2019-2026on January 26, 2021 at 1:54 am
Global exoskeleton market share is anticipated to witness a significant boost over the coming years. This is attributed mainly to the growing geriatric population and rising prevalence of ailments ...
- Park Vista soccer player recovering from spinal cord injuryon January 20, 2021 at 2:25 pm
Park Vista Community High School varsity soccer player Austin Polly has provided inspiration to his team while off the field. The 17-year-old high school senior is making remarkable progress on his ...
- Promoting axon regeneration in the zebrafish spinal cordon January 18, 2021 at 4:39 am
After an injury to the spinal cord, patients often remain paralyzed because damaged nerve tracts do not regrow due to the formation of scar tissue. Scientists from the Max Planck Institute for the ...
- New therapeutic approach enables functional recovery after spinal cord injury in miceon January 16, 2021 at 11:12 am
Using gene therapy, a research team has succeeded for the first time in getting mice to walk again after a complete cross-sectional injury. The nerve cells produced the curative protein themselves.
- Researchers to study potential treatment for limb dysfunction in patients with chronic spinal cord injuryon January 14, 2021 at 10:20 pm
Ghaith Androwis, PhD, and Steven Kirshblum, MD, received a grant from BrainQ Technologies to study a potential treatment for arm and hand dysfunction in individuals with chronic spinal cord injury.
- Electromagnetic stimulation may improve arm and hand function after spinal cord injuryon January 14, 2021 at 11:02 am
Ghaith Androwis, Ph.D., and Steven Kirshblum, MD, received a grant from BrainQ Technologies to study a potential treatment for arm and hand dysfunction in individuals with chronic spinal cord injury.
- Treatment may restore hand and arm control after spinal injuryon January 13, 2021 at 10:21 am
A treatment that combines physical therapy and a noninvasive way to stimulate nerve cells helps people with spinal cord injuries use their hands and arms.
- Electrical Stimulation Helps Regain Hand Function Post Spinal Cord Injuryon January 13, 2021 at 7:39 am
Researchers at the University of Washington have trialed a minimally invasive electrical stimulation technique that has resulted in remarkable ...
via Bing News