
ARL researchers Drs. Maggie Wigness and John Rogers pose with a small unmanned Clearpath Husky robot in their lab at the Adelphi Laboratory Center in Maryland. (U.S. Army photo)
Researchers at the U.S. Army Research Laboratory and the Robotics Institute at Carnegie Mellon University developed a new technique to quickly teach robots novel traversal behaviors with minimal human oversight.
The technique allows mobile robot platforms to navigate autonomously in environments while carrying out actions a human would expect of the robot in a given situation.
The experiments of the study were recently published and presented at the Institute of Electrical and Electronics Engineers’ International Conference on Robotics and Automation held in Brisbane, Australia.
ARL researchers Drs. Maggie Wigness and John Rogers engaged in face-to-face discussions with hundreds of conference attendees during their two and a half hour interactive presentation.
According to Wigness, one of research team’s goals in autonomous systems research is to provide reliable autonomous robot teammates to the Soldier.
“If a robot acts as a teammate, tasks can be accomplished faster and more situational awareness can be obtained,” Wigness said. “Further, robot teammates can be used as an initial investigator for potentially dangerous scenarios, thereby keeping Soldiers further from harm.”
To achieve this, Wigness said the robot must be able to use its learned intelligence to perceive, reason and make decisions.
“This research focuses on how robot intelligence can be learned from a few human example demonstrations,” Wigness said. “The learning process is fast and requires minimal human demonstration, making it an ideal learning technique for on-the-fly learning in the field when mission requirements change.”
ARL and CMU researchers focused their initial investigation on learning robot traversal behaviors with respect to the robot’s visual perception of terrain and objects in the environment.
More specifically, the robot was taught how to navigate from various points in the environment while staying near the edge of a road, and also how to traverse covertly using buildings as cover.
According to the researchers, given different mission tasks, the most appropriate learned traversal behavior can be activated during robot operation.
This is done by leveraging inverse optimal control, also commonly referred to as inverse reinforcement learning, which is a class of machine learning that seeks to recover a reward function given a known optimal policy.
In this case, a human demonstrates the optimal policy by driving a robot along a trajectory that best represents the behavior to be learned.
These trajectory exemplars are then related to the visual terrain/object features, such as grass, roads and buildings, to learn a reward function with respect to these environment features.
While similar research exists in the field of robotics, what ARL is doing is especially unique.
“The challenges and operating scenarios that we focus on here at ARL are extremely unique compared to other research being performed,” Wigness said. “We seek to create intelligent robotic systems that reliably operate in warfighter environments, meaning the scene is highly unstructured, possibly noisy, and we need to do this given relatively little a priori knowledge of the current state of the environment. The fact that our problem statement is so different than so many other researchers allows ARL to make a huge impact in autonomous systems research. Our techniques, by the very definition of the problem, must be robust to noise and have the ability to learn with relatively small amounts of data.”
According to Wigness, this preliminary research has helped the researchers demonstrate the feasibility of quickly learning an encoding of traversal behaviors.
“As we push this research to the next level, we will begin to focus on more complex behaviors, which may require learning from more than just visual perception features,” Wigness said. “Our learning framework is flexible enough to use a priori intel that may be available about an environment. This could include information about areas that are likely visible by adversaries or areas known to have reliable communication. This additional information may be relevant for certain mission scenarios, and learning with respect to these features would enhance the intelligence of the mobile robot.”
The researchers are also exploring how this type of behavior learning transfers between different mobile platforms.
Their evaluation to date has been performed with a small unmanned Clearpath Husky robot, which has a visual field of view that is relatively low to the ground.
“Transferring this technology to larger platforms will introduce new perception viewpoints and different platform maneuvering capabilities,” Wigness said. “Learning to encode behaviors that can be easily transferred between different platforms would be extremely valuable given a team of heterogeneous robots. In this case, the behavior can be learned on one platform instead of each platform individually.”
This research is funded through the Army’s Robotics Collaborative Technology Alliance, or RCTA, which brings together government, industrial and academic institutions to address research and development required to enable the deployment of future military unmanned ground vehicle systems ranging in size from man-portables to ground combat vehicles.
“ARL is positioned to actively collaborate with other members of the RCTA, leveraging the efforts of top researchers in academia to work on Army problems,” Rogers said. “This particular research effort was the synthesis of several components of the RCTA with our internal research; it would not have been possible if we didn’t work together so closely.”
Ultimately, this research is crucial for the future battlefield, where Soldiers will be able to rely on robots with more confidence to assist them in executing missions.
“The capability for the Next Generation Combat Vehicle to autonomously maneuver at optempo in the battlefield of the future will enable powerful new tactics while removing risk to the Soldier,” Rogers said. “If the NGCV encounters unforeseen conditions which require teleoperation, our approach could be used to learn to autonomously handle these types of conditions in the future.”
Learn more: Army researchers teaching robots to be more reliable teammates for Soldiers
The Latest on: Robot intelligence
via Google News
The Latest on: Robot intelligence
- Friend, kitchen staff, yoga finder: at CES 2021, robots are a highlight, having shown their worth in the coronavirus pandemicon January 13, 2021 at 9:15 am
The pandemic is helping robots prove their worth, from one that helps people feel less lonely to another that can cut labour costs in the kitchen – and they take centre stage at a consumer tech show.
- Best robots at CES 2021: Humanoid hosts, AI pets, UV-C disinfecting bots, and moreon January 13, 2021 at 7:27 am
CES features the latest in robotics innovation, and this year is no exception. From disinfecting robots to AI-enabled companions, here are some of the best robots at CES 2021.
- LG unveils autonomous robot with disinfecting ultraviolet lighton January 13, 2021 at 7:20 am
LG has unveiled an autonomous robot with disinfecting ultraviolet light. The company says the newest addition to its CLOi range of robots are aimed at hotels, schools, offices, restaurants and ...
- CES 2021 NUWA’s robot innovates learning with social interactionon January 12, 2021 at 11:34 pm
AI robot development. Its latest robot Kebbi Air provides a creative way for increasing kids’ motivation to learn. An official statement by NUWA Robotics conveyed: “It is our belief that, through ...
- Samsung’s New Robot Will Pour You a Glass of Wine and Do the Disheson January 12, 2021 at 1:01 pm
"But what if that home, and those technologies in it, were actually built around you?" To answer that question, Samsung presented the JetBot 90 AI+, a vacuum cleaner equipped with LiDAR and 3D sensors ...
- Draganfly Selected by Knightscope to Integrate Mobile Vital Sign Screening Technology into its Autonomous Security Robotson January 12, 2021 at 6:19 am
Initial Five Orders Integrated and DeliveredLos Angeles, CA., Jan. 12, 2021 (GLOBE NEWSWIRE) -- Draganfly Inc. (OTCQB: DFLYF) (CSE: DFLY) (FSE: ...
- UBTECH Showcases New UV-C Robots at CES 2021on January 12, 2021 at 1:41 am
UBTECH Robotics, a global leader in intelligent humanoid robotics and AI technologies, today introduced the newest additions to its portfolio of humanoid robots at CES 2021: ADIBOT: UV-C Disinfecting ...
- NASA readies Astrobee flying robots for serious space scienceon January 12, 2021 at 12:00 am
NASA astronauts aboard the International Space Station are preparing new Astrobee flying robots to enhance science on the orbiting laboratory -- a technology that could help ensure future deep space ...
- Samsung's new robots at CES 2021 help around the house and act as your assistanton January 11, 2021 at 6:12 am
At least one of the company's new Bots will be available in the US this year -- a robot vacuum that doubles as a home monitoring device.
via Bing News