via DARPA
SHRIMP program seeks to advance the state-of-the art in micro-to-milli robotics platforms and underlying technology
Imagine a natural disaster scenario, such as an earthquake, that inflicts widespread damage to buildings and structures, critical utilities and infrastructure, and threatens human safety. Having the ability to navigate the rubble and enter highly unstable areas could prove invaluable to saving lives or detecting additional hazards among the wreckage. Partnering rescue personnel with robots to evaluate high-risk scenarios and environments can help increase the likelihood of successful search and recovery efforts, or other critical tasks while minimizing the threat to human teams.
“Whether in a natural disaster scenario, a search and rescue mission, a hazardous environment, or other critical relief situation, robots have the potential to provide much needed aide and support,” said Dr. Ronald Polcawich, a DARPA program manager in the Microsystems Technology Office (MTO). “However, there are a number of environments that are inaccessible for larger robotic platforms. Smaller robotics systems could provide significant aide, but shrinking down these platforms requires significant advancement of the underlying technology.”
Technological advances in microelectromechanical systems (MEMS), additive manufacturing, piezoelectric actuators, and low-power sensors have allowed researchers to expand into the realm of micro-to-milli robotics. However, due to the technical obstacles experienced as the technology shrinks, these platforms lack the power, navigation, and control to accomplish complex tasks proficiently.
To help overcome the challenges of creating extremely SWaP-constrained microrobotics, DARPA is launching a new program called SHort-Range Independent Microrobotic Platforms (SHRIMP). The goal of SHRIMP is to develop and demonstrate multi-functional micro-to-milli robotic platforms for use in natural and critical disaster scenarios. To achieve this mission, SHRIMP will explore fundamental research in actuator materials and mechanisms as well as power storage components, both of which are necessary to create the strength, dexterity, and independence of functional microrobotics platforms.
Actuator technologies greatly affect a robotic platform’s mobility, load-bearing capacity, and dexterity, among other capabilities. Under the SHRIMP program, researchers will work to push beyond the current state-of-the-art and develop actuator materials and mechanisms that prioritize force generation, efficiency, strength-to-weight ratio, and maximum work density.
“The strength-to-weight ratio of an actuator influences both the load-bearing capability and endurance of a micro-robotic platform, while the maximum work density characterizes the capability of an actuator mechanism to perform high intensity tasks or operate over a desired duration,” said Polcawich. “Making significant advances to actuator mechanisms and materials will greatly impact our ability to develop micro-to-milli robotic platforms capable of performing complex tasks in the field.”
In addition to advancing the state-of-the-art for actuator technology, SHRIMP seeks to develop highly efficient power storage devices and power conversion circuitry. Most micro-robotics platforms rely on tethers for power, processing, or control, and are significantly constrained by energy-inefficient actuation technology as well as limited-energy storage devices. As SHRIMP aims to create complex micro-to-milli robots that operate independently, creating compact power sources and converters that can support high-voltage actuation mechanisms and significantly reduce battery drain becomes critical. As such, SHRIMP will explore fundamental research into power converters that can operate at frequencies of tens of Hz with exceptional efficiency as well as high energy density and high specific energy battery technologies.
“Micro-to-mm sized platforms provide a unique opportunity to push the development of highly efficient, versatile microelectronics,” said Polcawich. “While the goal of SHRIMP is develop small-scale, independent robotics platforms, we anticipate that discoveries made through our actuator and power storage research could prove beneficial to a number of fields currently constrained by these technical challenges–from prosthetics to optical steering.”
While advancing actuator and power supply technology will help to significantly advance the field, they are only part of the challenge when it comes to developing micro-to-milli robotics. “Engineering for extreme SWaP minimization is a diverse task that must take these areas into account but also the mechanical, electrical, and thermal considerations required for designing a highly-functional microsystem,” said Polcawich.
Researchers will be further challenged to bring the fundamental research efforts together with engineering problem solving to develop and demonstrate multi-functional micro-to-milli scale robotics platforms that deliver untethered mobility, maneuverability, and dexterity. The SHRIMP platforms will be evaluated using many of the same principles employed in the National Institute of Standards and Technology (NIST) Robotics Test Facility, which has been adapted for micro-to-milli robotic platforms. To determine potential field utility, each participating team will compete in an Olympic-style evaluation to test the platform’s mobility, maneuverability across flat and inclined surfaces, load-bearing capability, speed, and other capabilities.
Learn more: Developing Microrobotics for Disaster Recovery and High-Risk Environments
The Latest on: Micro-to-milli robotics platforms
via Google News
The Latest on: Micro-to-milli robotics platforms
- Insect-Scale Robots Emit Light When Flyingon June 24, 2022 at 5:47 am
A team of researchers at Massachusetts Institute of Technology were inspired by fireflies to create soft actuators that can emit light in different colors or patterns when flying. The artificial ...
- The Worldwide Robot Preventive Maintenance Industry is Predicted to Reach $10 Billion by 2030on June 22, 2022 at 2:38 am
The "Robot Preventive Maintenance Market by Type, by Mobility, by Component by Application and by End User - Global Opportunity Analysis and Industry Forecast, 2022 - 2030" report has been added to ...
- From Nanoamps To Gigahertz: The World’s Most Extreme Op Ampson June 18, 2022 at 5:00 pm
The NJU7700x series are ultra-low-power op amps, using less than a micro-amp. Image credit: New Japan Radio Co. The classic uA741 consumes about 1.7 mA in a typical application. More modern ...
- A technique to teach bimanual robots stir-fry cookingon June 17, 2022 at 6:30 am
As robots make their way into a variety of real-world environments, roboticists are trying to ensure that they can efficiently complete a growing number of tasks. For robots that are designed to ...
- Alkaline Fuel Cell Power Announces Appointment Of Carmine Marcello As Advisoron June 16, 2022 at 2:14 pm
“Carmine brings hands-on operational experience with business scale-ups, international micro-grid involvement ... AFCP is a diversified investment platform developing affordable, renewable ...
- The 512 Gigabyte Floppy Diskon May 25, 2022 at 5:00 pm
Instead the floppy hinges open, and there’s a holder for micro SD cards where the disk itself would be. It’s a bit of fun, and we have to agree with him that it makes a very handy holder for ...
- Azerbaijan Issues Startup Certificates To Several More Smeson May 23, 2022 at 12:52 pm
platform for online sale of agricultural products ... for a period of three years from the date of its receipt. The micro and small-sized entreprises, projects of which are under development ...
- Startup Watchlist: Indian Deeptech Startups To Watch Out For In 2020on May 2, 2022 at 5:52 am
The Inc42’s annual series, Startup Watchlist brings together the list of top growth stage startups to watch out for in 2020 across industries including — agritech, deeptech, logistics ...
- Dr Shuhei Miyashitaon August 13, 2020 at 7:02 pm
Shuhei Miyashita received a Ph.D. degree from the University of Zurich, Switzerland in 2011. He is currently a Lecturer at the Automatic Control and Systems Engineering Department in the University of ...
via Bing News