
Himadri Pakrasi (left), led a team of researchers that has created a bacteria that uses photosynthesis to create oxygen during the day, and at night, uses nitrogen to create chlorophyll for photosynthesis. The team included Michelle Liberton (second from left), Deng Liu and Maitrayee Bhattacharyya-Pakrasi. (Photo: Joe Angeles/Washington University)
From left:
Himadri Pakrasi, Myron and Sonya Glassberg/Albert and Blanche Greensfelder Distinguished University Professor;
Michelle Liberton, Research Scientist;
Deng Liu, Postdoctoral Research Associate;
Maitrayee Bhattacharyya, Senior Research Scientist.
Liu is holding cyanobacterium synechocystis sp. PCC 6803.
Photos by Joe Angeles/WUSTL Photos
Next step could be ‘nitrogen-fixing’ plants that can do the same, reducing need for fertilizer
In the future, plants will be able to create their own fertilizer. Farmers will no longer need to buy and spread fertilizer for their crops, and increased food production will benefit billions of people around the world, who might otherwise go hungry.
These statements may sound like something out of a science fiction novel, but new research by Washington University in St. Louis scientists show that it might soon be possible to engineer plants to develop their own fertilizer. This discovery could have a revolutionary effect on agriculture and the health of the planet.
The research, led by Himadri Pakrasi, the Glassberg-Greensfelder Distinguished University Professor in the Department of Biology in Arts & Sciences and director of the International Center for Energy, Environment and Sustainability (InCEES); and Maitrayee Bhattacharyya-Pakrasi, senior research associate in biology, was published in the May/June issue of mBio.
Creating fertilizer is energy intensive, and the process produces greenhouse gases that are a major driver of climate change. And it’s inefficient. Fertilizing is a delivery system for nitrogen, which plants use to create chlorophyll for photosynthesis, but less than 40 percent of the nitrogen in commercial fertilizer makes it to the plant.
After a plant has been fertilized, there is another problem: runoff. Fertilizer washed away by rain winds up in streams, rivers, bays and lakes, feeding algae that can grow out of control, blocking sunlight and killing plant and animal life below.
However, there is another abundant source of nitrogen all around us. The Earth’s atmosphere is about 78 percent nitrogen, and the Pakrasi lab in the Department of Biology just engineered a bacterium that can make use of that atmospheric gas — a process known as “fixing” nitrogen — in a significant step toward engineering plants that can do the same.
The research was rooted in the fact that, although there are no plants that can fix nitrogen from the air, there is a subset of cyanobacteria (bacteria that photosynthesize like plants) that is able to do so. Cyanobacteria can do this even though oxygen, a byproduct of photosynthesis, interferes with the process of nitrogen fixation.
The bacteria used in this research, Cyanothece, is able to fix nitrogen because of something it has in common with people.
“Cyanobacteria are the only bacteria that have a circadian rhythm,” Pakrasi said. Interestingly, Cyanothece photosynthesize during the day, converting sunlight to the chemical energy they use as fuel, and fix nitrogen at night, after removing most of the oxygen created during photosynthesis through respiration.
The research team wanted to take the genes from Cyanothece, responsible for this day-night mechanism, and put them into another type of cyanobacteria, Synechocystis, to coax this bug into fixing nitrogen from the air, too.
To find the right sequence of genes, the team looked for the telltale circadian rhythm. “We saw a contiguous set of 35 genes that were doing things only at night,” Pakrasi said, “and they were basically silent during the day.”
The team, which also included research associate Michelle Liberton, former research associate Jingjie Yu, and Deng Liu manually removed the oxygen from Synechocystis and added the genes from Cyanothece. Researchers found Synechocystis was able to fix nitrogen at 2 percent of Cyanothece. Things got really interesting, however, when Liu, a postdoctoral researcher who has been the mainstay of the project, began to remove some of those genes; with just 24 of the Cyanothece genes, Synechocystis was able to fix nitrogen at a rate of more than 30 percent of Cyanothece.
Nitrogen fixation rates dropped markedly with the addition of a little oxygen (up to 1 percent), but rose again with the addition of a different group of genes from Cyanothece, although it did not reach rates as high as without the presence of oxygen.
“This means that the engineering plan is feasible,” Pakrasi said. “I must say, this achievement was beyond my expectation.”
The next steps for the team are to dig deeper into the details of the process, perhaps narrow down even further the subset of genes necessary for nitrogen fixation, and collaborate with other plant scientists to apply the lessons learned from this study to the next level: nitrogen-fixing plants.
Crops that can make use of nitrogen from the air will be most effective for subsistence farmers — about 800 million people worldwide, according to the World Bank — raising yields on a scale that is beneficial to a family or a town and freeing up time that was once spent manually spreading fertilizer.
“If it’s a success,” Bhattacharyya-Pakrasi said, “it will be a significant change in agriculture.”
Learn more: Researchers engineer bacteria that create fertilizer out of thin air
The Latest on: Engineered bacteria
via Google News
The Latest on: Engineered bacteria
- Seeking the next generation of antibioticson February 26, 2021 at 1:38 pm
Some companies are now exploring Crispr-based antibiotics that might be delivered through viruses engineered so that they cannot reproduce or cause infections themselves, to name just one approach.
- Mass. marijuana has to be ultra-sterile. Just one problem: It’s a planton February 26, 2021 at 5:01 am
Massachusetts cannabis regulators are considering loosening the state's strict microbe standard, after farmers complained the rules hurt small businesses and discourage sustainability.
- Engineered viruses can fight the rise of antibiotic-resistant bacteriaon February 24, 2021 at 7:41 am
As the world fights the SARS-CoV-2 virus causing the COVID-19 pandemic, another group of dangerous pathogens looms in the background. The threat of antibiotic-resistant bacteria has been growing for ...
- Tree Resin Compound Defeats Drug-Resistant Bacteria in Lab Testson February 22, 2021 at 4:00 pm
A tree resin extract may prove effective in treating drug-resistant bacterial infections, according to early lab studies.
- Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteriaon February 22, 2021 at 2:29 am
Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we ...
- Disinfectants could be helping bacteria to become resistanton February 22, 2021 at 12:52 am
News-Medical speaks to Professor Robert Bragg about disinfectants and how they could be helping bacteria to become resistant.
- Farmers to benefit from modified maize seedson February 19, 2021 at 6:30 am
Murithi Mugo, Standard] Farmers across the country are set to benefit from modified maize seed varieties resistant to stem borer once the ongoing trial under the Bt Maize Project is complete. The ...
- Antimicrobial coating designed by Boeing that can kill bacteria and coronavirus is being tested by astronauts on the International Space Stationon February 15, 2021 at 3:37 pm
Boeing designed the coating to protect astronauts during space missions, but after the coronavirus outbreak researches modified the formula to target the COVID-19 virus.
- Red Planet bacterial biotechnologyon February 15, 2021 at 11:03 am
Scientists have grown cyanobacteria in Mars-like conditions, paving the way for sustainable life-support systems on the Red Planet.
via Bing News