
Robert Peterson, a former graduate student at JILA, works with a “dilution refrigerator.” This equipment can cool scientific instruments, like a new quantum “trampoline,” down to a fraction of a degree above absolute zero. (Credit: Peter Burns)
Take a bounce: A microscopic trampoline could help engineers to overcome a major hurdle for quantum computers, researchers from CU Boulder and the National Institute of Standards and Technology (NIST) report in a new study.
The research targets an important step for practical quantum computing: How can you convert microwave signals, such as those produced by quantum chips made by Google, Intel and other tech companies, into light beams that travel down fiberoptic cables? Scientists at JILA, a joint institute of CU Boulder and NIST, think they have the answer: They designed a device that uses a small plate to absorb microwave energy and bounce it into laser light.
The device can jump this gap efficiently, too, said JILA graduate student Peter Burns. He and his colleagues report that their quantum trampoline can convert microwaves into light with close to a 50 percent success rate—a key threshold that experts say quantum computers will need to meet to become everyday tools.
This chip, designed by researchers at JILA and measuring less than a half-inch across, converts microwave energy into laser light. (Credit: Peter Burns and Dan Schmidt)
Burns said that his team’s research could one day help engineers to link together huge networks of quantum computers.
“Currently, there’s no way to convert a quantum signal from an electrical signal to an optical signal,” said Burns, one of two lead authors of the new study. “We’re anticipating a growth in quantum computing and are trying to create a link that will be usable for these networks.”
Quantum translation
Such networks are on the horizon. Over the last decade, several tech firms have made inroads into designing prototype quantum chips. These devices encode information in what scientists call qubits, a more powerful storage tool than the traditional bits that run your home laptop. But getting the information out of such chips is a difficult feat, said Konrad Lehnert of JILA and a co-author of the new research.
Because outside interference can easily disrupt quantum signals, “you have to be cautious and gentle with the information you send,” said Lehnert, a NIST fellow.
One big challenge lies in translation. Top-of-the-line quantum chips like Google’s Bristlecone or Intel’s Tangle Lake send out data in the form of photons, or tiny packets of light, that wobble at microwave frequencies. Much of modern communications, however, relies on fiberoptic cables that can only send optical light.
In research published today in Nature Physics, the JILA group approached that challenge of fitting a square peg into a round hole with a tiny plate made of silicon-nitride. The team reports that zapping such a trampoline with a beam of microwave photons causes it to vibrate and eject photons from its other end—except these photons now quiver at optical frequencies.
The researchers were able to achieve that hop, skip and a jump at an efficiency of 47 percent, meaning that for every two microwave photons that hit the plate, close to one optical photon came out. That’s a much better performance than other methods for converting microwaves into light, such as by using crystals or magnets, Burns said.
He added that what’s really impressive about the device is its quietness. Even in the ultra-cold lab facilities where quantum chips are stored, trace amounts of heat can cause the team’s trampoline to shake. That, in turn, sends out excess photons that contaminate the signal. To get rid of the clutter, the researchers invented a new way to measure that noise and subtract it from their light beams. What’s left is a remarkably clean signal.
“What we do is measure that noise on the microwave side of the device, and that allows us to distinguish on the optical side between the signal and the noise,” Burns said.
Getting networked
The team will need to bring down the noise even more for the trampoline to become a practical tool. But it has the potential to enable a lot of networking. Even with recent advances in quantum chips, modern devices still have limited processing power. One way to get around that is to link together many smaller chips into a single number-cruncher, Lehnert said.
“It’s clear that we are moving toward a future where we will have little prototype quantum computers,” Lehnert said. “It will be a huge benefit if we can network them together.”
Learn more: Microscopic trampoline may help create networks of quantum computers
The Latest on: Quantum computer network
via Google News
The Latest on: Quantum computer network
- Quantum computing’s next trick? The power of networked clusterson January 25, 2021 at 10:08 pm
Quantum technology is often linked to three different areas of networking. The first is to improve the security of the internet, by adding quantum encryption to its communications technology. Second ...
- DeepTech Pioneer Terra Quantum Continues to Accelerate Quantum Technologies, Appointing Valerii Vinokur, Fritz London Memorial Prize Honouree, as Chief Technology Officer USon January 25, 2021 at 8:30 am
DeepTech pioneer Terra Quantum continues to accelerate Quantum technologies, appointing Valerii Vinokur, Fritz London Memorial honouree, as CTO US ...
- Air Force researchers consider quantum computing for sensors, communications, cyber, and other military useson January 25, 2021 at 5:06 am
Researchers will test quantum computing at an upcoming military exercise with Canada, the United Kingdom, Australia, and New Zealand, reports Brandi Vincent for Defense One.
- DeepTech Pioneer Terra Quantum Continues to Accelerate Quantum Technologies, Names Valerii Vinokur, Fritz London Memorial Prizeon January 25, 2021 at 4:11 am
DeepTech Pioneer Terra Quantum Continues to Accelerate Quantum Technologies, Names Valerii Vinokur, Fritz London Memorial Prize ZURICH– ...
- Quantum computer makers like their odds for big progresson January 23, 2021 at 11:24 pm
Quantum computer makers like their odds for big progress. A close-up of an IBM quantum computer. The processor is located in the silver ...
- MeitY to set up Quantum Computing Applications Lab in partnership with AWSon January 19, 2021 at 10:13 pm
This initiative will provide scientific, academic, and developer communities access to a quantum computing development environment aligned with the government's science and technology priorities.
- Using drones to create local quantum networkson January 18, 2021 at 11:09 am
A team of researchers affiliated with several institutions in China has used drones to create a prototype of a small airborne quantum network. In their paper published in the journal Physical Review ...
- Tech partnership to drive Finland’s quantum computing projecton January 17, 2021 at 3:49 am
The partnership combines VTT’s expertise in supercomputing and networking systems with IQM’s capacity to deliver a hardware stack for a quantum computer while working with VTT to integrate critical ...
- Quantum Drones Take Flighton January 14, 2021 at 4:00 pm
A small prototype of a drone-based quantum network has successfully relayed a quantum signal over a kilometer of free space.
via Bing News