
Image credit: Stefani Billings
Someday your self-driving car could react to hazards before you even see them, thanks to a laser-based imaging technology being developed by Stanford researchers that can peek around corners.
A driverless car is making its way through a winding neighborhood street, about to make a sharp turn onto a road where a child’s ball has just rolled. Although no person in the car can see that ball, the car stops to avoid it. This is because the car is outfitted with extremely sensitive laser technology that reflects off nearby objects to see around corners.
This scenario is one of many that researchers at Stanford University are imagining for a system that can produce images of objects hidden from view. They are focused on applications for autonomous vehicles, some of which already have similar laser-based systems for detecting objects around the car, but other uses could include seeing through foliage from aerial vehicles or giving rescue teams the ability to find people blocked from view by walls and rubble.
“It sounds like magic but the idea of non-line-of-sight imaging is actually feasible,” said Gordon Wetzstein, assistant professor of electrical engineering and senior author of the paper describing this work, published March 5 in Nature.
Seeing the unseen
The Stanford group isn’t alone in developing methods for bouncing lasers around corners to capture images of objects. Where this research advances the field is in the extremely efficient and effective algorithm the researchers developed to process the final image.
“A substantial challenge in non-line-of-sight imaging is figuring out an efficient way to recover the 3-D structure of the hidden object from the noisy measurements,” said David Lindell, graduate student in the Stanford Computational Imaging Lab and co-author of the paper. “I think the big impact of this method is how computationally efficient it is.”
For their system, the researchers set a laser next to a highly sensitive photon detector, which can record even a single particle of light. They shoot pulses of laser light at a wall and, invisible to the human eye, those pulses bounce off objects around the corner and bounce back to the wall and to the detector. Currently, this scan can take from two minutes to an hour, depending on conditions such as lighting and the reflectivity of the hidden object.
Once the scan is finished, the algorithm untangles the paths of the captured photons and, like the mythical image enhancement technology of television crime shows, the blurry blob takes much sharper form. It does all this in less than a second and is so efficient it can run on a regular laptop. Based on how well the algorithm currently works, the researchers think they could speed it up so that it is nearly instantaneous once the scan is complete.
Into the ‘wild’
The team is continuing to work on this system, so it can better handle the variability of the real world and complete the scan more quickly. For example, the distance to the object and amount of ambient light can make it difficult for their technology to see the light particles it needs to resolve out-of-sight objects. This technique also depends on analyzing scattered light particles that are intentionally ignored by guidance systems currently in cars – known as LIDAR systems.
“We believe the computation algorithm is already ready for LIDAR systems,” said Matthew O’Toole, a postdoctoral scholar in the Stanford Computational Imaging Lab and co-lead author of the paper. “The key question is if the current hardware of LIDAR systems supports this type of imaging.”
Before this system is road ready, it will also have to work better in daylight and with objects in motion, like a bouncing ball or running child. The researchers did test their technique successfully outside but they worked only with indirect light. Their technology did perform particularly well picking out retroreflective objects, such as safety apparel or traffic signs. The researchers say that if the technology were placed on a car today, that car could easily detect things like road signs, safety vests or road markers, although it might struggle with a person wearing non-reflective clothing.
“This is a big step forward for our field that will hopefully benefit all of us,” said Wetzstein. “In the future, we want to make it even more practical in the ‘wild.’”
Learn more: Stanford researchers develop technique to see objects hidden around corners
The Latest on: Non-line-of-sight imaging
[google_news title=”” keyword=”Non-line-of-sight imaging” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Non-line-of-sight imaging
- New, non-invasive imaging tool maps uterine contractions during laboron March 14, 2023 at 3:16 pm
called electromyometrial imaging (EMMI), to create real-time, three-dimensional images and maps of contractions during labor. The non-invasive imaging technique generates new types of images and ...
- Sight Unseen: Advanced Imaging Will Solve the Greatest Mysteries of the Human Bodyon March 11, 2023 at 4:00 pm
If you’ve ever landed in the emergency room with a broken bone, fallen and hit your head, or been pregnant, then you already know how important medical imaging technology can be. If you’ve ...
- Researchers develop new imaging approach to diagnose advanced form of non-alcoholic fatty liver diseaseon March 9, 2023 at 12:55 pm
Non-alcoholic fatty liver disease is the most ... It will then emit a signal that can be readily detected by MR imaging techniques, providing more sensitive MRI data for the diagnosis of NASH.
- Non-Imaging Diagnostic Catheter Market Insight [Edition 2023] | Key Market Drivers and Challengeson March 8, 2023 at 11:41 am
Furthermore, The Non-Imaging Diagnostic Catheter market research ... leaders and industry experts (such as experienced front-line staff, directors, CEOs, and marketing executives), downstream ...
- Analysis of Non-Imaging Diagnostic Catheter Market 2023: Growth Opportunities and Industry Trends by 2029on February 24, 2023 at 1:48 am
The “Non-Imaging Diagnostic Catheter Market” 2023 analyzes current industry trends and future growth prospects in detail. It offers a comprehensive overview of the market, including key ...
- Non-invasive imaging of spatiotemporal ion distribution across cell membraneson February 21, 2023 at 1:25 pm
"Consequently, the proposed EIT-based imaging technology provides a simple and non-invasive anisotropic transmembrane transport measurement method for cells and tissues. It can immediately measure ...
- line of sighton February 2, 2023 at 4:00 pm
Here is a two-part Navy training film from 1953 that describes the inner workings of mechanical fire control computers. It covers seven mechanisms: shafts, gears, cams, differentials, component ...
- Introduction to the Science of Medical Imagingon August 3, 2021 at 9:17 am
Redding, Brandon Choma, Michael A. and Cao, Hui 2012. Speckle-free laser imaging using random laser illumination. Nature Photonics, Vol. 6, Issue. 6, p. 355.
- Medical Imaging Certificateon May 12, 2021 at 4:37 pm
It's easy to see why the call for medical imaging professionals continues to grow. Imaging technology, using both ionizing and non-ionizing radiation, is vital to medical diagnostics and therapeutics.
- Non-medical human imagingon March 26, 2017 at 11:30 pm
Non-medical imaging is the screening of humans for purposes other than medical diagnosis, medical treatment or biomedical research. These procedures are frequently used, but the public may not always ...
via Bing News