The team’s new method uses 3D printing to make high-quality customized lenses quickly and at low-cost.s
The method could impact optical imaging, vision correction, and disease diagnosis
A new method to make a low-cost, high-quality lens quickly using a 3D printer has promising potential to create optical imaging lenses, customized contact lenses for correcting distorted vision, or to even turn iPhones into microscopes for disease diagnosis.
Developed by Northwestern Engineering researchers after two years of research, the customized optical component, which is 5 millimeters in height and 5 millimeters in diameter, can be 3D printed in about four hours.
“Up until now, we relied heavily on the time-consuming and costly process of polishing lenses,” said Cheng Sun, associate professor of mechanical engineering and whose lab developed the 3D printing process. “With 3D printing, now you have the freedom to design and customize a lens quickly.”
The research was published on March 24 in Advanced Materials. It includes images taken with the lens connected to an Apple iPhone 6s, including high-quality detailed images of a sunset moth’s wing and a spot on a weevil’s elyta.
Like all 3D printing, creating these lenses involves placing layer upon layer of material. Sun likened building the lens to running a film projector. “Instead of projecting one frame, one image after another, we layer one frame on top of another,” Sun said. “It is like playing a movie in a vertical fashion.”
But when researchers first printed the lens, its curved layers, made of a photo-curable resin, created a visible stepping.
“We realized that the layers on top of each other created surface roughness. The layer thickness is typically 5 microns, while the wavelength of visible light is around 0.5 micron. This creates an optically rough surface,” he said. “That was the bottleneck. The roughness made the lens incapable of clear optics.”
This lead to the group’s simple guiding research question: Can we make the surface smooth without slowing down the printing speed? To solve that challenge, Sun’s group developed a two-step process of layering and polishing.
“First, we used grayscale images to create more transitions between steps,” Sun said. “Then, we coated the surface with the same photo-curable resin. That then forms the meniscus that further smooths the surface.”
The result: a transparent lens with a smooth surface.
“I must have tried more than 100 times to get this just right,” said Xiangfan Chen, a PhD candidate in mechanical engineering and lead author on the study.
This lens, however, is not the first high-quality lens created by 3D printing. German-based company Nanoscribe has developed a high-precision femto-second 3D printer with 150 nanometer precision, but it builds the lens in a point-by-point fashion instead of layering, Sun said.
“It is a time-consuming process. That is their limitation,” he added. “We wanted to make something comparable but faster and with better quality.”
“If you want to make a lens, do you want to make it in two hours or two weeks?” Chen said. “We are very excited about this lens.”
This process could lead to a plethora of new devices with a wide variety of applications in optics and biomedical imaging, Sun said.
Next, the group will experiment in making larger lenses as well as investigating how to integrate the 3D-printed lens with medical devices, such as an endoscope or optical microscope. “These lenses could help detect some genetic disease or cancer,” said Biqin Dong, a post-doctoral fellow focused on biomedical and mechanical engineering, who also worked on the research.
Dong also envisions that these lenses could be used by doctors in underdeveloped areas for diagnostic imaging or by field scientists as portable microscopes. The lens could also be fashioned into a customized contact lens for people with distorted corneas caused by keratoconus. “The contact lens would feature the customized surface, matching it to the shape of the patient’s cornea,” Sun said.
Learn more: New Method Speeds Up 3D Printing of Millimeter-sized Imaging Lenses
The Latest on: Lens created by 3D printing
via Google News
The Latest on: Lens created by 3D printing
- Anycubic Forges Ahead in 3D Printing with Release of Anycubic LeviQ and Anycubic LighTurboon May 16, 2022 at 6:00 am
SHENZHEN, China, May 16, 2022 /PRNewswire/ -- Anycubic, a leading 3D printer manufacturer ... includes an LCD screen, optical lens, lens bracket, and LED beads. The LED beads project light onto the ...
- Cheap multifocal eyeglasses in minutes, not dayson May 15, 2022 at 10:10 pm
The company has developed a device the size of a toaster oven or a small 3D printer that can create a multifocal lens in six minutes at a fraction of the former cost, replacing a large manufacturing ...
- Break Your Frames? Print Some New Ones!on May 11, 2022 at 5:00 pm
[Aaron] was able to 3D scan the lenses using his camera phone and Autodesk’s 123D Catch software (free) to create the lens model ... a nice Stratasys polyjet 3D printer — due to the geometry ...
- Be the first to knowon May 9, 2022 at 8:25 am
places a cover on an alert light created on a 3D printer at Offutt Air Force Base, Nebraska November 30, 2021. When their supplier discontinued manufacturing of a red fault indicator lens cap to ...
- Scientists Say They’ve Created Crispier Chocolate Using 3D Printerson May 6, 2022 at 9:23 pm
This has lead researchers from the University of Amsterdam to experiment with 3D printing chocolate with ... study with metamaterials is with camera lenses that look completely flat to the human ...
- Researchers Devise Rapid 3D Printing Method for Human Organson May 5, 2022 at 5:00 pm
The Holy Grail of 3D bioprinting ... created a 3D-printing method based on stereolithography that uses hydrogels to produce organs quickly. Hydrogels are materials comprised mainly of water that are ...
- University of São Paulo: USP professors and students develop affordable microscopes made using 3D printingon May 3, 2022 at 11:32 pm
Created in the 16th century ... at USP developed an affordable device made with a 3D printer and lenses reused microscopes, used in conjunction with a cell phone. As the idea is to use the accessible ...
- Researchers add antireflection coatings to complex 3D printed micro-optical systemson April 28, 2022 at 9:54 am
Researchers have developed a new way to apply antireflective (AR) coatings to 3D printed multi-lens systems as small ... The new approach could also be used to create other thin film systems ...
- Researchers add antireflection coatings to complex 3D printed micro-optical systemson April 28, 2022 at 8:31 am
New low-temperature coating technique poised to enable high-quality 3D printed microlens ... for this multi-lens system.” The researchers plan to use their ALD approach to create advanced ...
via Bing News