
Rice scientists used a laser to burn graphene in the form of a Rice Owl into a piece of cloth pre-treated with fire retardant that turns the surface into amorphous carbon. Photo by Jeff Fitlow
Rice University scientists create patterned graphene onto food, paper, cloth, cardboard
Rice University scientists who introduced laser-induced graphene (LIG) have enhanced their technique to produce what may become a new class of edible electronics.
The Rice lab of chemist James Tour, which once turned Girl Scout cookies into graphene, is investigating ways to write graphene patterns onto food and other materials to quickly embed conductive identification tags and sensors into the products themselves.
“This is not ink,” Tour said. “This is taking the material itself and converting it into graphene.”
The process is an extension of the Tour lab’s contention that anything with the proper carbon content can be turned into graphene. In recent years, the lab has developed and expanded upon its method to make graphene foam by using a commercial laser to transform the top layer of an inexpensive polymer film.
The foam consists of microscopic, cross-linked flakes of graphene, the two-dimensional form of carbon. LIG can be written into target materials in patterns and used as a supercapacitor, an electrocatalyst for fuel cells, radio-frequency identification (RFID) antennas and biological sensors, among other potential applications.
The new work reported in the American Chemical Society journal ACS Nano demonstrated that laser-induced graphene can be burned into paper, cardboard, cloth, coal and certain foods, even toast.
“Very often, we don’t see the advantage of something until we make it available,” Tour said. “Perhaps all food will have a tiny RFID tag that gives you information about where it’s been, how long it’s been stored, its country and city of origin and the path it took to get to your table.”
He said LIG tags could also be sensors that detect E. coli or other microorganisms on food. “They could light up and give you a signal that you don’t want to eat this,” Tour said. “All that could be placed not on a separate tag on the food, but on the food itself.”
Multiple laser passes with a defocused beam allowed the researchers to write LIG patterns into cloth, paper, potatoes, coconut shells and cork, as well as toast. (The bread is toasted first to “carbonize” the surface.) The process happens in air at ambient temperatures.

Tour, left, and Chyan prepare a sample in an industrial laser to turn the sample’s surface into laser-induced graphene. Photo by Jeff Fitlow
“In some cases, multiple lasing creates a two-step reaction,” Tour said. “First, the laser photothermally converts the target surface into amorphous carbon. Then on subsequent passes of the laser, the selective absorption of infrared light turns the amorphous carbon into LIG. We discovered that the wavelength clearly matters.”
The researchers turned to multiple lasing and defocusing when they discovered that simply turning up the laser’s power didn’t make better graphene on a coconut or other organic materials. But adjusting the process allowed them to make a micro supercapacitor in the shape of a Rice “R” on their twice-lased coconut skin.
Defocusing the laser sped the process for many materials as the wider beam allowed each spot on a target to be lased many times in a single raster scan. That also allowed for fine control over the product, Tour said. Defocusing allowed them to turn previously unsuitable polyetherimide into LIG.
“We also found we could take bread or paper or cloth and add fire retardant to them to promote the formation of amorphous carbon,” said Rice graduate student Yieu Chyan, co-lead author of the paper. “Now we’re able to take all these materials and convert them directly in air without requiring a controlled atmosphere box or more complicated methods.”
The common element of all the targeted materials appears to be lignin, Tour said. An earlier study relied on lignin, a complex organic polymer that forms rigid cell walls, as a carbon precursor to burn LIG in oven-dried wood. Cork, coconut shells and potato skins have even higher lignin content, which made it easier to convert them to graphene.
Tour said flexible, wearable electronics may be an early market for the technique. “This has applications to put conductive traces on clothing, whether you want to heat the clothing or add a sensor or conductive pattern,” he said.
Learn more: Graphene on toast, anyone?
The Latest on: Laser-induced graphene
via Google News
The Latest on: Laser-induced graphene
- Micromachining Glass With A Laser — Very, Very Slowlyon January 13, 2021 at 4:00 pm
The process, formally known as “laser-induced backside wet-etching ... like using a laser and Kapton to make graphene supercapacitors.
- Team turns pyrolyzed ash into graphene for improving concrete, other compoundson January 13, 2021 at 2:16 pm
A strong jolt of energy flashes it into graphene. The technique by the lab of Rice chemist James Tour produces turbostratic graphene flakes that can be directly added to other substances like ...
- Search Results for: glasson January 9, 2021 at 3:59 pm
The process, formally known as “laser-induced backside wet-etching ... like using a laser and Kapton to make graphene supercapacitors.
- 14 students on North Shore named Regeneron semifinalistson January 9, 2021 at 3:36 pm
Fourteen students from school districts across the North Shore have been named semifinalists in the Regeneron Science Talent Search, with Manhasset Secondary School and the Wheatley School leading the ...
- Active response to emerging Covid-19 threaton December 23, 2020 at 12:01 am
His team has also discovered the promising ability of laser-induced graphene's (LIG) to combat viruses. Tests on two coronaviruses found that the LIG material inactivated over 90% of the virus in five ...
- Boeing, University of Arizona use heat to sanitize plane of COVID-19on December 17, 2020 at 11:55 am
Other means of sanitizing airplanes from the coronavirus do exist. One such example is a form of laser-induced graphene technology developed by Houston-based Rice University and Ben-Gurion ...
- 2019 cohorton December 13, 2020 at 7:06 pm
There, he used pulsed laser photoacoustics to study the thermal annealing of sapphire implanted with gold nanoparticles, as well as the laser induced fragmentation of ... of photocatalysts supported ...
- Particle Size, Shape and Identification with the Hound Platformon August 11, 2020 at 12:55 am
The Hound particle characterization platform from Unchained Labs is an advanced tool that merges Raman spectroscopy, laser-induced breakdown spectroscopy (LIBS), and microscopy to size, count, and ID ...
- Jeongwon Parkon September 4, 2019 at 2:47 am
Novel electronic applications with 2D materials and nanowires for biosensors: For example, Graphene is a covalent 2D electron ... ion-mobility spectrometry, laser-induced fluorescence, ...
via Bing News