
Research on the water electrolyte: Empa researcher Ruben-Simon Kühnel connecting a test cell to the charger with the concentrated saline solution. The stability of the system is determined in several charging and discharging cycles. Photo: Empa
Water could form the basis for future particularly inexpensive rechargeable batteries. Empa researchers have succeeded in doubling the electrochemical stability of water with a special saline solution. This takes us one step closer to using the technology commercially.
In the quest to find safe, low-cost batteries for the future, eventually we have to ask ourselves a question: Why not simply use water as an electrolyte? Water is inexpensive, available everywhere, non-flammable and can conduct ions. However, water has one major drawback: It is chemically stable only up to a voltage of 1.23 volts. In other words, a water cell supplies three times less voltage than a customary lithium ion cell with 3.7 volts, which makes it poorly suited for applications in an electric car. A cost-effective, water-based battery, however, could be extremely interesting for stationary electricity storage applications.
Saline solution without free water
Ruben-Simon Kühnel and David Reber, researchers in Empa’s Materials for Energy Conversion department, have now discovered a way to solve the problem: The salt containing electrolyte has to be liquid, but at the same time it has to be so highly concentrated that it does not contain any «excess» water.
For their experiments, the two researchers used the special salt sodium FSI (precise name: sodium bis(fluorosulfonyl)imide). This salt is extremely soluble in water: seven grams of sodium FSI and one gram of water produce a clear saline solution (see video clip). In this liquid, all water molecules are grouped around the positively charged sodium cations in a hydrate shell. Hardly any unbound water molecules are present.
One gram of water dissolves seven grams of sodium FSI. This produces a clear saline solution with an electrochemical stability of up to 2.6 volts – twice as much as other aqueous electrolytes.
Cost-effective production
The researchers discovered that this saline solution displays an electrochemical stability of up to 2.6 volts –nearly twice as much as other aqueous electrolytes. The discovery could be the key to inexpensive, safe battery cells; inexpensive because, apart from anything else, the sodium FSI cells can be constructed more safely and thus more easily than the well-known lithium ion batteries.
The system has already withstood a series of charging and discharging cycles in the lab. Until now, however, the researchers have been testing the anodes and cathodes of their test battery separately – against a standard electrode as a partner. In the next step, the two half cells are to be combined into a single battery. Then additional charging and discharging cycles are scheduled.
Empa’s research activities on novel batteries for stationary electricity storage systems are embedded in the Swiss Competence Center for Heat and Electricity Storage (SCCER HaE), which coordinates research for new heat and electricity storage concepts on a national level and is led by the Paul Scherrer Institute (PSI). If the experiment succeeds, inexpensive water batteries will be within reach.
Learn more: The salt water battery
The Latest on: Salt water battery
[google_news title=”” keyword=”salt water battery” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
- Startup unveils saltwater flow battery for large-scale storageon January 24, 2023 at 4:59 am
U.S.-based Salgenx has developed a scalable redox flow battery with two separate tanks of electrolytes, one of which is saltwater. Unlike other flow batteries, the new device is membrane-free, ...
- Salt Water Battery Market Size 2023 Comprehensive Insights and Capacity Growth Analysis 2028on January 23, 2023 at 4:01 pm
[78 Pages Report]"Salt Water Battery Market" size is projected to reach Multimillion USD by 2028, In comparison to 2023, at unexpected CAGR during 2023-2028 and generated magnificent revenue. This ...
- Salt Water Flow Battery: A Revolutionary Energy Storage Solutionon January 19, 2023 at 10:29 am
MADISON, WISCONSIN, USA, January 19, 2023 /einpresswire.com / -- We are excited to announce the launch of our newest innovation in energy storage: the salt water flow battery . This cutting-edge ...
- Saltwater is a lithium-ion battery’s worst enemy. This aqueous prototype embraces it.on January 18, 2023 at 7:39 pm
Saltwater is a death sentence for traditional lithium-ion setups, corroding and subsequently short circuiting the battery, which can then interact with internal solvents to cause fires.
- New battery could prevent post-hurricane electric vehicle fireson January 9, 2023 at 4:01 pm
By using saltwater as the battery's liquid electrolyte, the UCF researchers were able to use naturally occurring metal ions found in the saltwater, such as sodium, potassium, calcium and magnesium ...
- Salgenx Introduces the SAMx 250 kWh Salt Water Flow Batteryon January 8, 2023 at 11:51 pm
Salgenx is introducing the SAMx 250 kWh flow battery based on salt water using modular Intermediate Bulk Containers. MADISON, WISCONSIN, USA, January 9, 2023 ...
- Now is the Best Time to Manufacture Grid Scale Flow Batterieson January 4, 2023 at 11:37 am
Salgenx offers salt water flow battery licensing which allows manufacturing large grid scale batteries using modular shipping containers. MADISON, WISCONSIN, USA, January 4, 2023 /EINPresswire.com ...
via Google News and Bing News