
This image shows the growth of an E. coli strain with the temperature-sensitive “Cryodeath” kill switch integrated into its genome. At 37°C, the kill switch is kept OFF, allowing the bacteria to grow at four different dilutions (the lowest on the most left and the highest on the most). However, at 22°C, it is turned ON, rapidly killing the bacteria at the same dilutions. Credit: Wyss Institute at Harvard University
Stable autonomous kill switches ensure biocontainment of living microbes designed as devices for medicine or the environment
Synthetic biologists are fitting the genomes of microorganisms with synthetic gene circuits to break down polluting plastics, non-invasively diagnose and treat infections in the human gut, and generate chemicals and nutrition on long haul space flights. Although showing great promise in the laboratory, these technologies require control and safety measures that make sure the engineered microorganisms keep their functional gene circuits intact over many cell divisions, and that they are contained to the specific environments they are designed for.
Past efforts at Harvard’s Wyss Institute for Biologically Inspired Engineering led by Core Faculty members Pamela Silver and James Collins have created “kill switches” in bacteria that cause them to commit suicide in laboratory conditions when they are not wanted anymore. “We needed to take our previous work further and develop kill switches that are stable in the long run and would also be useful in real-world applications,” said Silver, who is also the Elliot T. and Onie H. Adams Professor of Biochemistry and Systems Biology at Harvard Medical School (HMS). Her research team now reports in Molecular Cell two new types of kill switches that address these challenges. The new kill switches are self-sufficient and highly stable in bacterial populations that evolve, and they last over many generations. They can ensure that only bacteria with intact synthetic gene circuits survive, or confine bacteria to a target environment at 37°C (body temperature) while inducing them to die at lower temperatures, as demonstrated during bacterial exit from a mouse intestinal tract.
For the first type of kill switch, the “Essentializer”, Silver’s team leveraged their previously engineered “memory element” that allows E. coli bacteria to remember an encounter with a specific stimulus in their environment. The memory element, derived from a bacteria-infecting virus called bacteriophage lambda, either remains silent or reports the occurrence of a signal by permanently turning on a visible reporter transgene that the scientists can trace. The signal can be any molecule, for example, an inflammatory cytokine in the gut or a toxin in the environment.
We needed to take our previous work further and develop kill switches that are stable in the long run and would also be useful in real-world applications.
In their recent study, the team devised a way that ensures the memory element is not lost from the genome during the evolution of the bacterial population over more than a hundred generations. During that time, the genomes of individual bacteria acquire random mutations, which also could potentially occur in the memory element, destroying it in their wake. The researchers introduced the Essentializer as a separate element at another location in the bacterium’s genome. As long as the memory element remains intact, either of the two bacteriophage factors that control its function also inhibits the expression of a toxin gene encoded by the Essentializer. However, the toxin gene remains somewhat “leaky,” still producing residual amounts of toxin that can kill the cell. To keep those residual toxin levels at bay, the researchers included a second gene in their kill switch, which produces low levels of an anti-toxin that can neutralize small amounts of the toxin.
“By tying the function of the memory element to that of the Essentializer, we basically link the survival of E. coli bacteria to the presence of the memory element. The removal of the memory element from the bacterial genome, which also eliminates the two toxin-suppressing phage factors, immediately triggers the kill switch to produce high amounts of toxin that overwhelm the anti-toxin and eliminate the affected bacteria from the population,” said first author Finn Stirling, a Graduate Student working with Silver. “To create this sophisticated system of checks and balances, we also made sure that the kill switches themselves remained fully intact, which is an important prerequisite for future applications; we verified that they were still functional after about 140 cell divisions.”
The second kind of kill switch that the team calls “Cryodeath” is able to confine bacteria to a specific temperature range using the same toxin/anti-toxin combination but regulating it differently. While again, low levels of the anti-toxin were produced, the toxin gene was linked to a regulatory sequence that confers cold-sensitivity. Shifting the bacteria from 37°C, where they are supposed to thrive, to 22°C, potently induced expression of the toxin and killed the bacteria. In seminal proof-of-concept experiments, the team demonstrated the usefulness of Cryodeath in vivo. After introducing an E. colistrain containing the kill switch into mice, only 1 of 100,000 bacteria was viable in fecal samples. “This advance brings us significantly closer to real-world applications of synthetically engineered microbes in the human body or the environment. We are now working toward combinations of kill switches that can respond to different environmental stimuli to provide even tighter control,” said Silver.
“This study shows how our teams are leveraging synthetic biology not only to reprogram microbes to create living cellular devices that can carry out useful functions for medicine and environmental remediation, but to do this in a way that is safe for all,” said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at HMS and the Vascular Biology Program at Boston Children’s Hospital, as well as Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS).
Learn more: Kill switches for engineered microbes gone rogue
The Latest on: Kill switches for engineered microbes
- Gene-cutting system may play second role as a genetic dimmer switchon January 19, 2021 at 7:54 am
In a series of experiments with laboratory-cultured bacteria, Johns Hopkins scientists have found evidence that there is a second role for the widely used gene-cutting system CRISPR-Cas9 -- as a ...
- The best way to kill a superbug? Weaponise a viruson January 19, 2021 at 12:07 am
With the medical world struggling to treat antibiotic-resistant infections, could scientists turn to a group of viruses that explode bacterial cells from within?
- Study: You can kill COVID-19 with flick of a switchon January 14, 2021 at 9:00 am
New Israeli research shows the humble light bulb could become a major player in the fight against the COVID-19 pandemic.
- Radiant UVC’s Ultraviolet Lighting Solutions Disinfect Large Rooms in Minuteson January 7, 2021 at 9:32 am
The company announced today that it is offering ready-to-order fixtures for room-by-room disinfection as well as custom engineered solutions ... airborne viruses, bacteria and mold.
- Chlorine can kill germs on surfaces, but it's more effective at cleaning water- here's why chlorine is better off in your poolon December 31, 2020 at 1:38 pm
This acid is able to penetrate the cell walls of microbes like bacteria and viruses, so it can attack and kill germs effectively. "Chlorine-based disinfectants are very effective against a wide ...
- Light flips genetic switch in bacteria inside transparent wormson December 29, 2020 at 9:05 am
For the experiments, Tabor's lab engineered ... for investigating how bacteria are benefiting our health." Rice University. (2020, December 22). Light flips genetic switch in bacteria inside ...
- Astonishing Animals That Illuminate Human Healthon December 7, 2020 at 11:18 am
Ahituv wanted to know which molecular switches tell cells in each location to interpret ... But Aimee Kao, MD, PhD, finds the worms quite charming as they forage for bacteria to eat in a petri dish.
- MSK Immunotherapy — Timeline of Progresson April 19, 2016 at 2:49 am
In 1893, surgeon William Coley began treating cancer patients with a mixture of heat-killed bacteria (“Coley’s toxins") after ... It is considered an immunotherapy because immune cells from the donor ...
- Immunotherapy at MSKon April 13, 2016 at 8:43 am
In 1893, surgeon William Coley began treating cancer patients with a mixture of heat-killed bacteria (“Coley’s toxins") after ... It is considered an immunotherapy because immune cells from the donor ...
- Genetically Engineered Bacteria Could Help Tackle Obesityon April 10, 2015 at 10:23 am
People may dislike the idea, but genetically modified bacteria are an incredibly useful ... such as adding in a “kill switch” triggered by another administered compound, or engineering them ...
via Google News and Bing News