
Schematic shows the configuration for structural phase transition on a molybdenum ditelluride monolayer (MoTe2, shown as yellow and blue spheres), which is anchored by a metal electrodes (top gate and ground). The ionic liquid covering the monolayer and electrodes enables a high density of electrons to populate the monolayer, leading to changes in the structural lattice from a hexagonal (2H) to monoclinic (1T’) pattern. (Credit: Ying Wang/Berkeley Lab)
Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory
The same electrostatic charge that can make hair stand on end and attach balloons to clothing could be an efficient way to drive atomically thin electronic memory devices of the future, according to a new study led by researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).
In a study published todayin the journal Nature, scientists have found a way to reversibly change the atomic structure of a 2-D material by injecting, or “doping,” it with electrons. The process uses far less energy than current methods for changing the configuration of a material’s structure.
“We show, for the first time, that it is possible to inject electrons to drive structural phase changes in materials,” said study principal investigator Xiang Zhang, senior faculty scientist at Berkeley Lab’s Materials Sciences Division and a professor at UC Berkeley. “By adding electrons into a material, the overall energy goes up and will tip off the balance, resulting in the atomic structure rearranging to a new pattern that is more stable. Such electron doping-driven structural phase transitions at the 2-D limit is not only important in fundamental physics; it also opens the door for new electronic memory and low-power switching in the next generation of ultra-thin devices.”
Switching a material’s structural configuration from one phase to another is the fundamental, binary characteristic that underlies today’s digital circuitry. Electronic components capable of this phase transition have shrunk down to paper-thin sizes, but they are still considered to be bulk, 3-D layers by scientists. By comparison, 2-D monolayer materials are composed of a single layer of atoms or molecules whose thickness is 100,000 times as small as a human hair.
“The idea of electron doping to alter a material’s atomic structure is unique to 2-D materials, which are much more electrically tunable compared with 3-D bulk materials,” said study co-lead author Jun Xiao, a graduate student in Zhang’s lab.
The classic approach to driving the structural transition of materials involves heating to above 500 degrees Celsius. Such methods are energy-intensive and not feasible for practical applications. In addition, the excess heat can significantly reduce the life span of components in integrated circuits.
A number of research groups have also investigated the use of chemicals to alter the configuration of atoms in semiconductor materials, but that process is still difficult to control and has not been widely adopted by industry.
“Here we use electrostatic doping to control the atomic configuration of a two-dimensional material,” said study co-lead author Ying Wang, another graduate student in Zhang’s lab. “Compared to the use of chemicals, our method is reversible and free of impurities. It has greater potential for integration into the manufacturing of cell phones, computers, and other electronic devices.”
The researchers used molybdenum ditelluride (MoTe2), a typical 2-D semiconductor, and coated it with an ionic liquid (DEME-TFSI), which has an ultra-high capacitance, or ability to store electric charges. The layer of ionic liquid allowed the researchers to inject the semiconductor with electrons at a density of a hundred trillion to a quadrillion per square centimeter. It is an electron density that is one to two orders higher in magnitude than what could be achieved in 3-D bulk materials, the researchers said.
Through spectroscopic analysis, the researchers determined that the injection of electrons changed the atoms’ arrangement of the molybdenum ditelluride from a hexagonal shape to one that is monoclinic, which has more of a slanted cuboid shape. Once the electrons were retracted, the crystal structure returned to its original hexagonal pattern, showing that the phase transition is reversible. Moreover, these two types of atom arrangements have very different symmetries, providing a large contrast for applications in optical components.
“Such an atomically thin device could have dual functions, serving simultaneously as optical or electrical transistors, and hence broaden the functionalities of the electronics used in our daily lives,” said Wang.
Learn more: Injecting Electrons Jolts 2-D Structure Into New Atomic Pattern
The Latest on: Electronic memory devices
[google_news title=”” keyword=”electronic memory devices” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
- iPad RAM list: Here’s how much memory every iPad model hason June 2, 2023 at 2:35 pm
This guide covers the amount of memory in every iPad model Apple has released. Follow along for all the details in our iPad RAM list.
- Shape Memory Polymers Market are Revolutionizing the Consumer Electronics Industry, Totaling Around US$ 3.5 Billion by 2032on June 1, 2023 at 6:57 pm
The global shape memory polymer market is projected to grow at a CAGR of 26.9% between 2022 and 2032, according to a recently published study by Future Market Insights. As of 2022, the market is ...
- Easy DIY Device Charging & Storage Ledgeson May 31, 2023 at 6:09 pm
There is no doubt that we all are tethered in some way to our electronic devices and, of course, to the CHARGING of all of those devices. My daughter is no exception to this rule and was consistently ...
- Remote Monitoring of Cardiovascular Implantable Electronic Devices: New Questions Raisedon May 30, 2023 at 5:00 pm
The term cardiovascular implantable electronic devices (CIEDs ... for remote monitoring and for storage of large amounts of data regarding device function, diagnostics, delivered therapy, and ...
- What is an SSD: Modern data storage for PCs and laptops explainedon May 30, 2023 at 7:00 am
If you've ever wondered "what is an SSD?", you're not alone. This essential data storage device is one of the most important specs to look for when buying a new laptop or PC.
- Device manager for storage deviceson May 26, 2023 at 11:42 am
New Swissbit Device Manager (SBDM) allows customers to initiate firmware updates in addition to giving comprehensive insight into the lifecycle status of its storage solutions. Swissbit has launched ...
- Best personal cloud storage in 2023on May 26, 2023 at 8:06 am
The best personal cloud storage services provide a fast, secure and easy way to upload your photos and other documents to the cloud. Unlike with cloud storage for businesses, personal cloud ...
- Global IoT Chip Market in Retail Report 2023: Increasing Demand for Connected Wearable Device Drives Growthon May 24, 2023 at 5:00 pm
The IoT chip market in retail is expected to grow at a compound annual growth rate of 12.40% over the forecast period to reach a market size of US$6,018.507 million in 2028, from US$2,655.386 million ...
- InventHelp Inventor Develops Electronic Sports Training Product (RSM-171)on May 23, 2023 at 7:58 am
My design would help the user remain focused on their body movements to help build a positive muscle memory." The invention provides a sports training device to help improve ...
- Public Safety Department’s K-9 gets new protective vest thanks to charitable donationson May 19, 2023 at 5:11 pm
K-9 Kahu is an electronic storage device dog — the only one in Hawaii. His main duty is to help with criminal investigations by locating hidden electronic storage devices like cell phones ...
via Google News and Bing News