
Jeff Catchmark began experimenting with biomaterials that might be used instead of plastics a decade or so ago out of concerns for sustainability. He became interested in cellulose because it is the largest volume sustainable, renewable material on earth.
Image: Penn State
An inexpensive biomaterial that can be used to sustainably replace plastic barrier coatings in packaging and many other applications has been developed by Penn State researchers, who predict its adoption would greatly reduce pollution.
Completely compostable, the material — a polysaccharide polyelectrolyte complex — is comprised of nearly equal parts of treated cellulose pulp from wood or cotton, and chitosan, which is derived from chitin — the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is the mountains of leftover shells from lobsters, crabs and shrimp consumed by humans.
These environmentally friendly barrier coatings have numerous applications ranging from water-resistant paper, to coatings for ceiling tiles and wallboard, to food coatings to seal in freshness, according to lead researcher Jeffrey Catchmark, professor of agricultural and biological engineering, College of Agricultural Sciences.
“The material’s unexpected strong, insoluble adhesive properties are useful for packaging as well as other applications, such as better performing, fully natural wood-fiber composites for construction and even flooring,” he said. “And the technology has the potential to be incorporated into foods to reduce fat uptake during frying and maintain crispness. Since the coating is essentially fiber-based, it is a means of adding fiber to diets.”
The amazingly sturdy and durable bond between carboxymethyl cellulose and chitosan is the key, he explained. The two very inexpensive polysaccharides — already used in the food industry and in other industrial sectors — have different molecular charges and lock together in a complex that provides the foundation for impervious films, coatings, adhesives and more.
The potential reduction of pollution is immense if these barrier coatings replace millions of tons of petroleum-based plastic associated with food packaging used every year in the United States — and much more globally, Catchmark noted.
He pointed out that the global production of plastic is approaching 300 million tons per year. In a recent year, more than 29 million tons of plastic became municipal solid waste in the U.S. and almost half was plastic packaging. It is anticipated that 10 percent of all plastic produced globally will become ocean debris, representing a significant ecological and human health threat.
“These results show that polysaccharide polyelectrolyte complex-based materials may be competitive barrier alternatives to synthetic polymers for many commercial applications,” said Catchmark, who, in concert with Penn State, has applied for a patent on the coatings.
“In addition, this work demonstrates that new, unexpected properties emerge from multi-polysaccharide systems engaged in electrostatic complexation, enabling new high-performance applications.”
Catchmark began experimenting with biomaterials that might be used instead of plastics a decade or so ago out of concerns for sustainability. He became interested in cellulose, the main component in wood, because it is the largest volume sustainable, renewable material on earth. Catchmark studied its nanostructure — how it is assembled at the nanoscale.
He believed he could develop natural materials that are more robust and improve their properties, so that they could compete with synthetic materials that are not sustainable and generate pollution — such as the low-density polyethylene laminate applied to paper board, Styrofoam and solid plastic used in cups and bottles.
“The challenge is, to do that you’ve got to be able to do it in a way that is manufacturable, and it has to be less expensive than plastic,” Catchmark explained. “Because when you make a change to something that is greener or sustainable, you really have to pay for the switch. So it has to be less expensive in order for companies to actually gain something from it. This creates a problem for sustainable materials — an inertia that has to be overcome with a lower cost.”
“We are trying to take the last step now and make a real impact on the world, and get industry people to stop using plastics and instead use these natural materials,” he said. “So they (consumers) have a choice — after the biomaterials are used, they can be recycled, buried in the ground or composted, and they will decompose. Or they can continue to use plastics that will end up in the oceans, where they will persist for thousands of years.”
Learn more: New biomaterial could replace plastic laminates, greatly reduce pollution
The Latest on: Biomaterials
[google_news title=”” keyword=”biomaterials” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
- Noble Biomaterials Ionic+® Botanical Technology Receives EPA Registrationon March 24, 2023 at 1:00 am
Registration supports antimicrobial claims for treated article applications. SCRANTON, Pa., March 23, 2023 /PRNewswire/ -- Noble Biomaterials, a global leader in antimicrobial solutions for soft ...
- Global Dental Biomaterials of Dental Consumables Market to Grow from 2023-2026on March 23, 2023 at 9:26 pm
The Global Dental Biomaterials of Dental Consumables Market 2022-2026 Research Report offers a comprehensive analysis of the market, providing valuable insights into the market status, size, share, ...
- Bio-based anti-microbial from Noble Biomaterials passes EPA hurdleon March 23, 2023 at 9:33 am
Home textiles made with Noble Biomaterials ’ latest anti-microbial now have another attribute to feature in their product descriptions. The company’s Ionic+ Botanical has received official EPA ...
- Biden sets US goal to replace 90% of plastics with biomaterialson March 22, 2023 at 12:48 pm
A new report from the White House calls for rapid advancements over the next 20 years in bio-based plastics as part of a bigger government biotech strategy.
- Improved Bone Tumor Model Boosts Search for Therapieson March 21, 2023 at 2:47 am
Researchers have developed and used an upgraded tumor model that mimics bone to find that the body’s immune response can make tumor cells more resistant to chemotherapy.
- Can synthetic polymers replace the body's natural proteins?on March 20, 2023 at 10:37 am
Scientists developing new biomaterials often try to mimic the body's natural proteins, but a chemist shows that simpler polymers -- based on a handful of plastic building blocks -- also work well.
- Upgraded tumor model optimizes search for cancer therapieson March 20, 2023 at 6:49 am
To find out how they really behave, Rice University researchers developed an upgraded tumor model that houses osteosarcoma cells beside immune cells known as macrophages inside a three-dimensional ...
- Replacing single-use plastics with biomaterialson March 17, 2023 at 9:18 pm
Local News Replacing single-use plastics with biomaterials An Israeli company and N.C. State researchers are working together to replace single-use plastics in farming and developing nations with ...
- This insertable 3D printer will repair tissue damage from the insideon March 17, 2023 at 11:51 am
Researchers at the University of New South Wales, Sydney, have developed a flexible 3D bioprinter that can layer organic material directly onto organs or tissue. Unlike other bioprinting approaches, ...
- Three Generations of Biomaterialson March 16, 2023 at 5:00 pm
Hendriks: If we look at the evolution of biomaterials technology then we can see that, initially, the choice of biomedical materials for use in the body was based on achieving a suitable combination ...
via Google News and Bing News