via Learning Mind
New stochastic separation theorems proved by University of Leicester mathematicians could enhance capabilities of artificial intelligence
Errors in Artificial Intelligence which would normally take a considerable amount of time to resolve could be corrected immediately with the help of new research from the University of Leicester.
Researchers from the University of Leicester’s Department of Mathematics have published a paper [1] in the journal Neural Networks outlining mathematical foundations for new algorithms which could allow for Artificial Intelligence to collect error reports and correct them immediately without affecting existing skills – at the same time accumulating corrections which could be used for future versions or updates.
This could essentially provide robots with the ability to correct errors instantaneously, effectively ‘learn’ from their mistakes without damage to the knowledge already gained, and ultimately spread new knowledge amongst themselves.
Together with Industrial partners from ARM, the algorithms are combined into a system, an AI corrector, capable of improving performance of legacy AIs on-the-fly (the technical report is available online [2]).
ARM is the world’s largest provider of semiconductor IP and is the architecture of choice for more than 90% of the smart electronic products being designed today.
Professor Alexander Gorban from the University of Leicester’s Department of Mathematics said: “Multiple versions of Artificial Intelligence Big Data analytics systems have been deployed to date on millions of computers and gadgets across various platforms. They are functioning in non-uniform networks and interact.
“Industrial technological giants such as Amazon, IBM, Google, Facebook, SoftBank, ARM and many others are involved in the development of these systems. Performance of them increases, but sometimes they make mistakes like false alarms, misdetections, or wrong predictions. The mistakes are unavoidable because inherent uncertainty of Big Data.
“It seems to be very natural that humans can learn from their mistakes immediately and do not repeat them (at least, the best of us). It is a big problem how to equip Artificial Intelligence with this ability.
“It is difficult to correct a large AI system on the fly, more difficult as to shoe a horse at full gallop without stopping.
“We have recently found that a solution to this issue is possible. In this work, we demonstrate that in high dimensions and even for exponentially large samples, linear classifiers in their classical Fisher’s form are powerful enough to separate errors from correct responses with high probability and to provide efficient solution to the non-destructive corrector problem.”
There is a desperate need in a cheap, fast and local correction procedure that does not damage important skills of the AI systems in the course of correction.
Iterative methods of machine learning are never cheap for Big Data and huge AI systems and therefore the researchers suggest that the corrector should be non-iterative with the reversible correctors needed to reconfigure and merge local corrections.
Dr Ivan Tyukin from the University of Leicester’s Department of Mathematics said: “It is often infeasible just to re-train the systems for several reasons: they are huge and re-training requires significant computational resources or long time or both; it may be impossible retrain the system locally, at the point where mistake occur; and we can fix one thing but break another leading to that important skills could vanish.
“The development of sustainable large intelligent systems for mining of Big Data requires creation of technology and methods for fast non-destructive, non-iterative, and reversible corrections. No such technology existed until now.”
The researchers have discovered and proved stochastic separation theorems which provide tools for correction of the large intelligent data analytic systems.
With this approach, instantaneous learning in Artificial Intelligence could be possible, providing AI with the ability to re-learn following a mistake after an error has occurred.
Learn more: New theorems help robots to correct errors on-the-fly and learn from each other
The Latest on: Self-learning robots
- Ola to Deploy Advanced Automation at New E-Scooter Factoryon February 24, 2021 at 3:07 pm
Artificial intelligence, digital twins, robotics and other Industry 4.0 technology will play a key role at Ola’s huge new factory here.
- Engineering Faculty and Students Meet the Challenges of Remote Engineering Educationon February 23, 2021 at 4:00 pm
She explained to ASME, “I want to promote more self-learning and less lecturing ... Nothing demonstrates this more than an Arduino robot car project created by Matt Luongo. He is a student at USC ...
- Soft Robotics Market Projected to Deliver Greater Revenues during the Forecast Period until 2025on February 17, 2021 at 8:42 pm
The Soft Robotics Market was valued at USD 645.45 million in 2019 and is expected to reach USD 4965.06 million by 2025, at a CAGR of 40.5% over the forecast period 2020 - 2025. Soft Robots have ...
- Ola to deploy ABB robotics, automation solutions at electric scooter factoryon February 15, 2021 at 7:06 am
“Connecting ABB’s robot solutions to OLA’s digital ecosystem ... “deeply integrated into all its systems, continuously self-learning and optimising every aspect of the manufacturing ...
- SD Times news digest: CogitAI’s self-learning AI platform, ElectricFlow Winter Release, and ShiftLeft’s Series B fundingon February 11, 2021 at 4:00 pm
According to the company, the Continua platform can turn any “process, system, software bot, or real robot into a self-learning autonomous service to drive actionable business outcomes.” ...
- OLA to deploy ABB robotics and automation solutions at its Tamil Nadu factory for electric scooterson February 11, 2021 at 4:00 pm
Ola’s scooter mega-factory billed to be the world’s largest scooter factory, is expected to be ready and operational in the coming months.
- Ola to deploy ABB robotics, automation solutions at its mega-factoryon February 11, 2021 at 2:10 am
ABB robots will be digitally integrated into ... that will be deeply integrated into all its systems, continuously self-learning and optimising every aspect of the manufacturing process.
- Ola to deploy ABB robotic solutions at mega-factory for e-scooterson February 11, 2021 at 1:49 am
ABB robots will be digitally integrated into ... that will be deeply integrated into all its systems, continuously self-learning and optimising every aspect of the manufacturing process.
via Google News and Bing News