
via Learning Mind
New stochastic separation theorems proved by University of Leicester mathematicians could enhance capabilities of artificial intelligence
Errors in Artificial Intelligence which would normally take a considerable amount of time to resolve could be corrected immediately with the help of new research from the University of Leicester.
Researchers from the University of Leicester’s Department of Mathematics have published a paper [1] in the journal Neural Networks outlining mathematical foundations for new algorithms which could allow for Artificial Intelligence to collect error reports and correct them immediately without affecting existing skills – at the same time accumulating corrections which could be used for future versions or updates.
This could essentially provide robots with the ability to correct errors instantaneously, effectively ‘learn’ from their mistakes without damage to the knowledge already gained, and ultimately spread new knowledge amongst themselves.
Together with Industrial partners from ARM, the algorithms are combined into a system, an AI corrector, capable of improving performance of legacy AIs on-the-fly (the technical report is available online [2]).
ARM is the world’s largest provider of semiconductor IP and is the architecture of choice for more than 90% of the smart electronic products being designed today.
Professor Alexander Gorban from the University of Leicester’s Department of Mathematics said: “Multiple versions of Artificial Intelligence Big Data analytics systems have been deployed to date on millions of computers and gadgets across various platforms. They are functioning in non-uniform networks and interact.
“Industrial technological giants such as Amazon, IBM, Google, Facebook, SoftBank, ARM and many others are involved in the development of these systems. Performance of them increases, but sometimes they make mistakes like false alarms, misdetections, or wrong predictions. The mistakes are unavoidable because inherent uncertainty of Big Data.
“It seems to be very natural that humans can learn from their mistakes immediately and do not repeat them (at least, the best of us). It is a big problem how to equip Artificial Intelligence with this ability.
“It is difficult to correct a large AI system on the fly, more difficult as to shoe a horse at full gallop without stopping.
“We have recently found that a solution to this issue is possible. In this work, we demonstrate that in high dimensions and even for exponentially large samples, linear classifiers in their classical Fisher’s form are powerful enough to separate errors from correct responses with high probability and to provide efficient solution to the non-destructive corrector problem.”
There is a desperate need in a cheap, fast and local correction procedure that does not damage important skills of the AI systems in the course of correction.
Iterative methods of machine learning are never cheap for Big Data and huge AI systems and therefore the researchers suggest that the corrector should be non-iterative with the reversible correctors needed to reconfigure and merge local corrections.
Dr Ivan Tyukin from the University of Leicester’s Department of Mathematics said: “It is often infeasible just to re-train the systems for several reasons: they are huge and re-training requires significant computational resources or long time or both; it may be impossible retrain the system locally, at the point where mistake occur; and we can fix one thing but break another leading to that important skills could vanish.
“The development of sustainable large intelligent systems for mining of Big Data requires creation of technology and methods for fast non-destructive, non-iterative, and reversible corrections. No such technology existed until now.”
The researchers have discovered and proved stochastic separation theorems which provide tools for correction of the large intelligent data analytic systems.
With this approach, instantaneous learning in Artificial Intelligence could be possible, providing AI with the ability to re-learn following a mistake after an error has occurred.
Learn more: New theorems help robots to correct errors on-the-fly and learn from each other
The Latest on: Self-learning robots
[google_news title=”” keyword=”self-learning robots” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
- Coding Robots Perfect for Byte-Sized Learnerson December 1, 2023 at 2:17 pm
You can get coding robots for kids who are as young as 3, and cool coding robots for teens, and every age in-between. Coding is a real boon to kids learning according to the University of Texas, ...
- Watch: ‘Anthrobots’ could mend broken spines and rewire lost neurons in Alzheimer patientson December 1, 2023 at 7:23 am
Tiny bio-robots that could crawl inside the body to mend a broken spine, clear the arteries or rewire lost neurons in Alzheimer’s patients have been developed by scientists.
- Tiny living robots made from human cells surprise scientistson November 30, 2023 at 4:00 pm
“In our method, each anthrobot grows from a single cell.” It’s this self-assembly that makes them unique. Biological robots have been made by other scientists, but they were constructed by hand by ...
- "Can a robot really make your perfect perfume? I put it to the test"on November 30, 2023 at 4:44 am
I tried the EveryHuman Algorithmic Perfumery to see if a robot could pick my signature scent – this is what happened. Can AI really make your perfect perfume?
- The evolving robot: Past, present and future roleson November 29, 2023 at 3:59 pm
There is little doubt that mobile, self-governing robots will play key roles ... sensor technology, and machine learning. Piece by piece, autonomous robots were able to perceive their surroundings ...
- The best robot vacuums of 2023, tested by editorson November 29, 2023 at 11:45 am
We tested nine great robot vacuums that can keep your house cleaner by picking up dirt, dust and pet hair on a daily basis.
- Humanoid robots are here, but they’re a little awkward. Do we really need them?on November 28, 2023 at 8:24 pm
All the attention — and money — poured into making ungainly humanoid machines might make the whole enterprise seem like a futile hobby for wealthy technologists, but for some pioneers of legged robots ...
- An approach that allows robots to learn in changing environments from human feedback and explorationon November 27, 2023 at 4:00 pm
Researchers at University of Washington and Massachusetts Institute of Technology (MIT) recently introduced a new approach that allows robots to learn new skills while navigating changing environments ...
- New method uses crowdsourced feedback to help train robotson November 27, 2023 at 3:07 pm
A new technique enables an AI agent to be guided by data crowdsourced asynchronously from nonexpert human users as it learns to complete a task through reinforcement learning. The method trains the ...
- Cascade Learning Closes Reliability Gap for Robotic Vision AIon November 27, 2023 at 2:03 pm
Cascade learning has changed the automation game, attaining long-desired reliability with near 100% success rates in item picking.
via Google News and Bing News