
Acetic Acid Improves Drought Tolerance
The effect of several organic acids on plant drought tolerance after 14 days. From left to right, water, HCl, formic acid, acetic acid, butyric acid, lactic acid, citric acid. Note, only plants treated with acetic acid survived.
Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) have discovered a new, yet simple, way to increase drought tolerance in a wide range of plants. Published in Nature Plants, the study reports a newly discovered biological pathway that is activated in times of drought. By working out the details of this pathway, scientists were able to induce greater tolerance for drought-like conditions simply by growing plants in vinegar.
Led by Jong-Myong Kim and Motoaki Seki at RIKEN CSRS, the large collaborative effort began with the discovery of novel Arabidopsis mutants that have strong drought tolerance, although the reasons were unknown. These plants have a mutation to an enzyme called HDA6 (histone deacetylase6), and the first goal of the current study was to determine exactly how this mutation allows the plants to grow normally in severe and extended conditions without water.
Kim and Seki say that this project has led to several important discoveries. Not only did they discover that external application of vinegar can enhance drought tolerance in the Arabidopsis plant, but they also found that this pathway is regulated epigenetically and conserved in common crops such as maize, rice, and wheat.
Initial testing in normal Arabidopsis under drought stress showed that genomic-wide expression of hda6 was linked to activation of the biological pathway that produces acetate, the main component of vinegar. In the mutated plants, they found that under the same conditions, this pathway was activated even more, and plants produced larger amounts of acetate. Further analysis showed that activity of the HDA6 enzyme acts as a switch that controls which type of metabolic pathway is active. Normally plants break down sugar for energy, but in time of drought, they switch to the acetate-producing pathway.
The team next measured acetate levels in normal plants and found that the amount of acetate produced by plants during drought directly correlated to how well they survived. To confirm this, they tested plants with mutations in two of the genes found in the acetate-biosynthesis pathway. Results showed that these plants produced less acetate and were more sensitive to drought than normal plants.
These results predicted that increasing the amount of acetate in plants could help them survive drought. The team tested this hypothesis by growing normal plants in drought conditions and treatment with acetic acid, other organic acids, or water. They found that after 14 days over 70% of the plants treated with acetic acid had survived, while virtually all other plants had died.
The scientists mapped the entire signaling pathway from the HDA6 switch, and realized that this pathway is highly conserved across different plant species. They performed the same experiment as described above, and found that drought tolerance also increased in rice, wheat, and maize when the plants were grown in optimal acetic acid concentrations.
Kim notes the significance of this finding. “Although transgenic technologies can be used to create plants that are more tolerant to drought, we must also develop simple and less expensive technologies because genetically modified plants are not available in all several countries. We expect that external application of acetate to plants will be a useful, simple, and less expensive way to enhance drought tolerance in a variety of plants.”
Learn more: Vinegar: a cheap and simple way to help plants fight drought
The Latest on: Drought tolerance
[google_news title=”” keyword=”drought tolerance” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
- The hot, dry weather may have you feeling sympathetic to farmers but, for now, they're not complainingon June 1, 2023 at 3:40 pm
It's a global reach and it shows you how big that coffee shop has become." Johnson and Fentie said strides have been made to develop more drought tolerant corn. Johnson said work is now being done on ...
- Yes, We Have More Water… But Some Regulations Have Been Extendedon June 1, 2023 at 3:14 pm
The state extended a drought regulation banning using drinkable water to irrigate grass at commercial, industrial and institutional properties.
- Discovery of gene helps corn withstand droughton June 1, 2023 at 11:51 am
Scientists at Penn State University have made a discovery that could lead to a new variety of corn able to withstand drought and low-nitrogen soil conditions, potentially easing future global food ...
- Majority of Californians fear worsening weather swings due to climate change, poll findson June 1, 2023 at 4:00 am
Latest UC Berkeley poll of California voters asks about the impact of this year's very wet winter and the prospects for the Colorado River.
- 12 drought-tolerant vegetables that will grow well in dry conditionson June 1, 2023 at 1:00 am
All crops need water to survive and produce a harvest, however your life can be made a bit easier by selecting some of the most drought-tolerant vegetables. If you live in a particularly hot and dry ...
- Climate Change Is Threatening Ketchup. AI Could Help Save Iton May 31, 2023 at 9:06 am
Drought has decimated production of tomato paste—the key ingredient in ketchup—for three years running. AI could save your French fries.
- Is lavender drought tolerant? Experts recommend the best types of lavender for dry conditionson May 29, 2023 at 3:00 am
Lavender is highly tolerant of drought conditions and that makes it an ideal aromatic herb for if you are planning a dry garden. Lavender as a plant is native to the Mediterranean and Middle East, ...
- The five best drought-tolerant trees to plant on the Central Coaston May 26, 2023 at 5:45 am
Chinese Pistache (Pistacia chinensis). A favorite in California landscapes with a dense, rounded crown and beautiful orange and red fall foliage. Deciduous. Grows 30-50 feet. Coast Live ...
- How a plant shortage could flummox the West's drought responseon May 25, 2023 at 5:20 am
Explosive growth in the West is driving water consumption, and demand could increase exponentially if developers turn to conventional lawns rather than drought-friendly landscaping.
- As drought grips the Horn of Africa, humanitarian aid is no match for climate changeon May 22, 2023 at 3:01 am
Experts say the hunger crisis in Somalia and Ethiopia highlights an urgent need for climate adaptation funding.
via Google News and Bing News