
via New Jersey Institute of Technology
Efforts to reduce our dependence on fossil fuels are advancing on various significant fronts. Such initiatives include research focused on more efficient production of gaseous hydrogen fuel by using solar energy to break water down into its components of hydrogen and oxygen.
Recently, in an article published in the journal Nature Energy, lead author Yong Yan, an assistant professor in the Department of Chemistry and Environmental Science, reported a key breakthrough in the basic science essential for progress toward this goal.
The article, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” reports on the investigative work that Yan carried out along with colleagues affiliated with the National Renewable Energy Laboratory, the Colorado School of Mines and San Diego State University. Essentially, they created what is known as a quantum dot photoelectrochemical cell that catalytically achieved quantum efficiency for hydrogen gas production exceeding 100% — in the case of their experiments an efficiency approaching 114%.
Quantum dots are extremely small semiconductor particles only a few nanometers in size. (A nanometer is one-billionth of a meter.) In their device, lead sulfide quantum dots replace semiconductor materials such as silicon and copper indium gallium arsenide. The advantage is that such a photoelectrochemical device can, potentially, convert a greater portion of the solar spectrum into useful energy.
The device described is able to absorb one visible solar photon and produce two, or even more, electrons through a process known as multiple exciton generation, or MEG, which are further utilized to reduce water to generate hydrogen gas. Although many scientists worldwide are engaged in efforts to achieve quantum efficiency as close as possible to 100% for solar hydrogen production, Yan’s achievement in directly exceeding this threshold is a significant fundamental breakthrough. It clearly proves that the photoelectrochemical cell design he describes is much more efficient than a quantum dot solar cell with respect to quantum yield.
Yan, who joined the NJIT faculty in 2016, emphasizes that this advance is at the level of basic solar science, and that the breakthrough with respect to quantum yield does not equate to a substantial increase in the ultimate solar-to-hydrogen conversion efficiency. Nonetheless, this dramatic increase in quantum yield realized with a uniquely innovative lead sulfide quantum dot photoelectrochemical device is an important development in several ways, and as such is a product of Yan’s long-standing interest in renewable sources of energy, especially in novel applications of solar energy.
For Yan, the research reported in Nature Energy culminated at NJIT after his previous work as a postdoc at Princeton University and at the U.S. Department of Energy’s National Renewable Energy Laboratory in Colorado. The success of this leading-edge effort was made possible with funding provided, in part, by NJIT and the Department of Energy.
Yan says, “These results do present the possibility of generating more energy more efficiently with such a solar-capture device in the future. This could also lead to a fundamental change in the entire process of producing hydrogen fuel. We can now obtain hydrogen fuel from water by using electricity supplied by conventional power plants that consume fossil fuels. But by building on the basic step of achieving such high quantum efficiency for solar hydrogen generation, we could make the process of producing a ‘green’ fuel much greener as well.”
Learn More: A More Than 100% Quantum Step Toward Producing Hydrogen Fuel
The Latest on: Quantum dot photoelectrochemical cell
- Quantum Dots: Heralding a Brighter Future for Clinical Diagnosticson January 14, 2021 at 4:00 pm
Semiconductors have a valence band that is filled with electrons and an empty conduction band separated by a band gap (also called energy gap). For an electron to be excited into the conduction ...
- Make Your Own Quantum Dotson January 13, 2021 at 4:00 pm
We aren’t quite sure. Commercially, quantum dots have applications (or potential applications) in lasers, solar cells, light emission devices, and even biological markers. However, we don’t ha ...
- Multifunctional Fe304 Cored Magnetic-Quantum Dot Fluorescent Nanocomposites for RF Nano-hyperthermia of Cancer Cellson January 6, 2021 at 4:01 pm
and an external surface that is functionalized with a photoluminescent “quantum dot” cadmium selenide/zinc sulfide outer layer and specific “recognition molecules” (ligands) that bind to cancer cells.
- Accelerating Sales in North America to Drive the Quantum Dots Microspheres Market between 2020 and 2030on January 5, 2021 at 5:32 pm
Biologically active fluorescent labeled quantum dots & microspheres are widely being used to process cellular concentration for studying living cells. Over the years, western blotting and cell ...
- Reading out qubits like toppling dominoes: a new scalable approach towards the quantum computeron January 4, 2021 at 3:39 am
Different colours correspond to different configurations of electrons on the quantum dot array. The black lines correspond to transitions of electrons, where the black diagonal line corresponds to a ...
via Google News and Bing News