Post-doctoral researcher Hairen Tan and his colleagues in Professor Ted Sargent’s lab have removed a key barrier to the manufacture of low-cost perovskite solar cells. (Photo: Kevin Soobrian)
A U of T Engineering innovation could make printing cells as easy and inexpensive as printing a newspaper. Dr. Hairen Tan and his team have cleared a critical manufacturing hurdle in the development of a relatively new class of solar devices called perovskite solar cells. This alternative solar technology could lead to low-cost, printable solar panels capable of turning nearly any surface into a power generator.
“Economies of scale have greatly reduced the cost of silicon manufacturing,” says University Professor Ted Sargent (ECE), an expert in emerging solar technologies and the Canada Research Chair in Nanotechnology and senior author on the paper. “Perovskite solar cells can enable us to use techniques already established in the printing industry to produce solar cells at very low cost. Potentially, perovskites and silicon cells can be married to improve efficiency further, but only with advances in low-temperature processes.”
Today, virtually all commercial solar cells are made from thin slices of crystalline silicon which must be processed to a very high purity. It’s an energy-intensive process, requiring temperatures higher than 1,000 degrees Celsius and large amounts of hazardous solvents.
In contrast, perovskite solar cells depend on a layer of tiny crystals — each about 1,000 times smaller than the width of a human hair — made of low-cost, light-sensitive materials. Because the perovskite raw materials can be mixed into a liquid to form a kind of ‘solar ink’, they could be printed onto glass, plastic or other materials using a simple inkjet process.
But, until now, there’s been a catch: in order to generate electricity, electrons excited by solar energy must be extracted from the crystals so they can flow through a circuit. That extraction happens in a special layer called the electron-selective layer, or ESL. The difficulty of manufacturing a good ESL has been one of the key challenges holding back the development of perovskite solar cell devices.
“The most effective materials for making ESLs start as a powder and have to be baked at high temperatures, above 500 degrees Celsius,” says Tan. “You can’t put that on top of a sheet of flexible plastic or on a fully fabricated silicon cell — it will just melt.”
Tan and his colleagues developed a new chemical reaction than enables them to grow an ESL made of nanoparticles in solution, directly on top of the electrode. While heat is still required, the process always stays below 150 degrees C, much lower than the melting point of many plastics.
The new perovskite solar cells have achieved an efficiency of 20.1 per cent and can be manufactured at low temperatures, which reduces the cost and expands the number of possible applications. (Photo: Kevin Soobrian)
The new nanoparticles are coated with a layer of chlorine atoms, which helps them bind to the perovskite layer on top — this strong binding allows for efficient extraction of electrons. In a paper recently published in Science, Tan and his colleagues report the efficiency of solar cells made using the new method at 20.1 per cent.
“This is the best ever reported for low-temperature processing techniques,” says Tan. He adds that perovskite solar cells using the older, high-temperature method are only marginally better at 22.1 per cent, and even the best silicon solar cells can only reach 26.3 per cent.
Another advantage is stability. Many perovskite solar cells experience a severe drop in performance after only a few hours, but Tan’s cells retained more than 90 per cent of their efficiency even after 500 hours of use. “I think our new technique paves the way toward solving this problem,” says Tan, who undertook this work as part of a Rubicon Fellowship.
“The Toronto team’s computational studies beautifully explain the role of the newly developed electron-selective layer. The work illustrates the rapidly-advancing contribution that computational materials science is making towards rational, next-generation energy devices,” said Professor Alán Aspuru-Guzik, an expert on computational materials science in the Department of Chemistry and Chemical Biology at Harvard University, who was not involved in the work.
“To augment the best silicon solar cells, next-generation thin-film technologies need to be process-compatible with a finished cell. This entails modest processing temperatures such as those in the Toronto group’s advance reported in Science,” said Professor Luping Yu of the University of Chicago’s Department of Chemistry. Yu is an expert on solution-processed solar cells and was not involved in the work.
Keeping cool during the manufacturing process opens up a world of possibilities for applications of perovskite solar cells, from smartphone covers that provide charging capabilities to solar-active tinted windows that offset building energy use. In the nearer term, Tan says his technology could be used in tandem with conventional solar cells.
“With our low-temperature process, we could coat our perovskite cells directly on top of silicon without damaging the underlying material,” says Tan. “If a hybrid perovskite-silicon cell can push the efficiency up to 30 per cent or higher, it makes solar power a much better economic proposition.”
Learn more: Printable solar cells just got a little closer
Receive an email update when we add a new SOLAR CELLS article.
The Latest on: Solar cells
via Google News
The Latest on: Solar cells
- NASA’s Lucy spacecraft unfurls its solar panels ahead of launchon April 11, 2021 at 12:29 pm
Now, Lucy is preparing for launch in October. Ahead of the launch, Lucy has deployed its solar panels in a series of solar array deployment tests. The panels have a diameter of 24 feet each, though ...
- NASA’s Lucy Spacecraft Stretches Its Wings in Successful Solar Panel Deployment Teston April 10, 2021 at 9:54 pm
At 24 feet (7.3 meters) across each, Lucy’s two solar panels underwent initial deployment tests in January 2021. In this photo, a technician at Lockheed Martin Space in Denver, Colorado, inspects one ...
- If You Invested $1000 in Canadian Solar a Decade Ago, This is How Much It'd Be Worth Nowon April 9, 2021 at 5:58 am
What if you'd invested in Canadian Solar (CSIQ) ten years ago? It may not have been easy to hold on to CSIQ for all that time, but if you did, how much would your investment be worth today? With that ...
- Biden Fights a New Cold War With Solar Panelson April 9, 2021 at 4:00 am
That’s a lot to ask of a solar panel.” Kevin Book of ClearView Energy Partners was talking about the recent hawkish turn in the Biden administration’s cleantech rhetoric. President Joe Biden — and his ...
- Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cellson April 8, 2021 at 2:10 pm
Formamidinium lead triiodide (FAPbI 3) perovskite solar cells (PSCs) are mainly fabricated by sequentially coating lead iodide and formamidinium iodide, or by coating a solution in which all ...
- Carbon dots from human hair boost solar cellson April 8, 2021 at 6:15 am
Perovskites solar cells, a relatively new photovoltaic technology, are seen as the best PV candidate to deliver low-cost, highly efficient solar electricity in coming years. They have proven to be ...
- Carbon dots made from hair boost stability of perovskite solar cellson April 8, 2021 at 12:04 am
Over the past decade or so, gains in efficiency have seen perovskite solar cells become a highly promising technology in the realm of renewable energy, quickly coming to match or even outdo the ...
- Carbon nanodots from human hair boost solar cellson April 8, 2021 at 12:03 am
In a study published in the Journal of Materials Chemistry A ("Self-assembled carbon dot-wrapped perovskites enable light trapping and defect passivation for efficient and stable perovskite solar ...
- NASA Lucy spacecraft solar panel deployment test goes off without a hitchon April 7, 2021 at 6:03 am
NASA is currently working on a spacecraft called Lucy and has announced that it has successfully completed a solar panel deployment test. Lucy has completed thermal vacuum testing of both solar panels ...
via Bing News