“Electron”. Image credit Pietro Zuco, via Flickr.
Since its discovery in 2004, scientists have believed that graphene may have the innate ability to superconduct. Now Cambridge researchers have found a way to activate that previously dormant potential.
Researchers have found a way to trigger the innate, but previously hidden, ability of graphene to act as a superconductor – meaning that it can be made to carry an electrical current with zero resistance.
The finding, reported in Nature Communications, further enhances the potential of graphene, which is already widely seen as a material that could revolutionise industries such as healthcare and electronics. Graphene is a two-dimensional sheet of carbon atoms and combines several remarkable properties; for example, it is very strong, but also light and flexible, and highly conductive.
Since its discovery in 2004, scientists have speculated that graphene may also have the capacity to be a superconductor. Until now, superconductivity in graphene has only been achieved by doping it with, or by placing it on, a superconducting material – a process which can compromise some of its other properties.
But in the new study, researchers at the University of Cambridge managed to activate the dormant potential for graphene to superconduct in its own right. This was achieved by coupling it with a material called praseodymium cerium copper oxide (PCCO).
Superconductors are already used in numerous applications. Because they generate large magnetic fields they are an essential component in MRI scanners and levitating trains. They could also be used to make energy-efficient power lines and devices capable of storing energy for millions of years.
Superconducting graphene opens up yet more possibilities. The researchers suggest, for example, that graphene could now be used to create new types of superconducting quantum devices for high-speed computing. Intriguingly, it might also be used to prove the existence of a mysterious form of superconductivity known as “p-wave” superconductivity, which academics have been struggling to verify for more than 20 years.
The research was led by Dr Angelo Di Bernardo and Dr Jason Robinson, Fellows at St John’s College, University of Cambridge, alongside collaborators Professor Andrea Ferrari, from the Cambridge Graphene Centre; Professor Oded Millo, from the Hebrew University of Jerusalem, and Professor Jacob Linder, at the Norwegian University of Science and Technology in Trondheim.
“It has long been postulated that, under the right conditions, graphene should undergo a superconducting transition, but can’t,” Robinson said. “The idea of this experiment was, if we couple graphene to a superconductor, can we switch that intrinsic superconductivity on? The question then becomes how do you know that the superconductivity you are seeing is coming from within the graphene itself, and not the underlying superconductor?”
Similar approaches have been taken in previous studies using metallic-based superconductors, but with limited success. “Placing graphene on a metal can dramatically alter the properties so it is technically no longer behaving as we would expect,” Di Bernardo said. “What you see is not graphene’s intrinsic superconductivity, but simply that of the underlying superconductor being passed on.”
PCCO is an oxide from a wider class of superconducting materials called “cuprates”. It also has well-understood electronic properties, and using a technique called scanning and tunnelling microscopy, the researchers were able to distinguish the superconductivity in PCCO from the superconductivity observed in graphene.
Superconductivity is characterised by the way the electrons interact: within a superconductor electrons form pairs, and the spin alignment between the electrons of a pair may be different depending on the type – or “symmetry” – of superconductivity involved. In PCCO, for example, the pairs’ spin state is misaligned (antiparallel), in what is known as a “d-wave state”.
By contrast, when graphene was coupled to superconducting PCCO in the Cambridge-led experiment, the results suggested that the electron pairs within graphene were in a p-wave state. “What we saw in the graphene was, in other words, a very different type of superconductivity than in PCCO,” Robinson said. “This was a really important step because it meant that we knew the superconductivity was not coming from outside it and that the PCCO was therefore only required to unleash the intrinsic superconductivity of graphene.”
It remains unclear what type of superconductivity the team activated, but their results strongly indicate that it is the elusive “p-wave” form. If so, the study could transform the ongoing debate about whether this mysterious type of superconductivity exists, and – if so – what exactly it is.
In 1994, researchers in Japan fabricated a triplet superconductor that may have a p-wave symmetry using a material called strontium ruthenate (SRO). The p-wave symmetry of SRO has never been fully verified, partly hindered by the fact that SRO is a bulky crystal, which makes it challenging to fabricate into the type of devices necessary to test theoretical predictions.
“If p-wave superconductivity is indeed being created in graphene, graphene could be used as a scaffold for the creation and exploration of a whole new spectrum of superconducting devices for fundamental and applied research areas,” Robinson said. “Such experiments would necessarily lead to new science through a better understanding of p-wave superconductivity, and how it behaves in different devices and settings.”
The study also has further implications. For example, it suggests that graphene could be used to make a transistor-like device in a superconducting circuit, and that its superconductivity could be incorporated into molecular electronics. “In principle, given the variety of chemical molecules that can bind to graphene’s surface, this research can result in the development of molecular electronics devices with novel functionalities based on superconducting graphene,” Di Bernardo added.
Learn more: Graphene’s sleeping superconductivity awakens
[osd_subscribe categories=’superconducting-graphene’ placeholder=’Email Address’ button_text=’Subscribe Now for any new posts on the topic “SUPERCONDUCTING GRAPHENE”‘]
Receive an email update when we add a new SUPERCONDUCTING GRAPHENE article.
The Latest on: Superconducting graphene
via Google News
The Latest on: Superconducting graphene
- A new age of 2.5D materialson May 6, 2022 at 5:02 pm
Scientists are exploring new ways to artificially stack two-dimensional (2D) materials, introducing so-called 2.5D materials with unique physical properties. Researchers in Japan reviewed the latest ...
- Graphene Is So Yesterday — Meet Boropheneon May 6, 2022 at 5:00 pm
It wasn’t long ago that graphene seemed to take the science and engineering communities by storm. You can make bits of it with a pencil and some sticky tape, yet it had all sorts of wonderful ...
- A world-first one-way superconductor could make computers 400 times fasteron April 28, 2022 at 11:23 am
The novel one-way superconductor that can operate at extremely cold temperatures will highly like to be able to "revolutionize centralized and supercomputing".
- Researchers Analyze Several Layers of Grapheneon April 27, 2022 at 5:00 pm
This establishes trilayer graphene as an exciting platform for complex many ... Among other aspects, the resulting two superconducting candidate states we get are consistent with the unexpected ...
- From conventional to strange metal behavior in magic-angle twisted bilayer grapheneon April 27, 2022 at 8:41 am
DOI: 10.1038/s41567-019-0596-3 Petr Stepanov et al, Untying the insulating and superconducting orders in magic-angle graphene, Nature (2020). DOI: 10.1038/s41586-020-2459-6 ...
- Glimpse inside a graphene sandwichon April 25, 2022 at 7:22 am
i.e., are not realized in twisted bilayer graphene. “We are able to use our resulting phase diagram for the correlated normal states to constrain the form of the superconductor”, says Scheurer. “Among ...
- Guiding a Superconducting Future with Graphene Quantum Magicon April 19, 2022 at 9:43 am
researchers from Nagoya University have detailed the superconducting nature of a new class of superconducting material, magic-angle twisted bilayer graphene. For a material to behave as a ...
- Guiding a superconducting future with graphene quantum magicon April 19, 2022 at 7:44 am
The superconducting transition temperature of twisted bilayer graphene is very low, at 1K (-272°C), but the nematic state manages to increase it by several degrees.
- Guiding a superconducting future with graphene quantum magicon April 18, 2022 at 5:00 pm
The superconducting transition temperature of twisted bilayer graphene is very low, at 1K (–272°C), but the nematic state manages to increase it by several degrees.
via Bing News