
Wearable information terminals (left) and large rollable-screen TV (right) are made using super-flexible LC technology covering large areas, with high-resolution at low-cost.
Researchers at Tohoku University have developed a super flexible liquid crystal (LC) device, in which two ultra-thin plastic substrates are firmly bonded by polymer wall spacers.
The team, led by Professor Hideo Fujikake and Associate Professor Takahiro Ishinabe of the School of Engineering, hopes the new organic materials will help make electronic displays and devices more flexible, increasing their portability and all round versatility. New usage concepts with flexibility and high quality display could offer endless possibilities in near-future information services.
Previous attempts to create a flexible display using an organic light-emitting diode (OLED) device with a thin plastic substrate were said to be promising, but unstable. The plastic substrates are poor gas-barriers for oxygen and water vapor, and the OLED materials can seriously be damaged by their gasses. As for flexible OLEDs, there has also been no device fabrication technology established so far for large-area, high-resolution and low-cost displays.
To overcome these challenges, Fujikake’s research team decided to try making existing LC displays flexible by replacing the conventional thick glass substrates, which are both rigid and heavy, with the plastic substrates, because LC materials do not deteriorate even for poor gas barrier of flexible substrates.
Flexible LC displays have many advantages, such as established production methods for large-area displays. The material itself, which is inexpensive, can be mass produced and shows little quality degradation over time.
However, in conventional flexible LC displays, one important problem remains. The gap of plastic substrates (100 ?m thick) sandwiching an LC layer becomes non-uniformed when the LC device is bent, causing the display image to be distorted.
In their study, Fujikake’s team developed a super-flexible LC device by bonding two ultra-thin transparent polyimide substrates (10 ?m thick approximately) together, using robust polymer wall spacers.
![]() |
The structure of super-flexible LC device is created by ultra-thin plastic substrates bonded by polymer wall spacers. |
The ultra-thin transparent substrate is made using the coating and debonding processes of a polyimide solution supplied by Mitsui Chemicals. The result is a flexible sheet, similar to food-wrapping cling film.
![]() |
The ultra-thin polyimide film (left) was formed by coating and debonding processes, and the roll-up resistance (right) was tested for developing super-flexible LC devices. |
The substrate has the attractive features of heat resistance, and the ability to form fine pixel structures, including transparent electrodes and colour filters. The refractive index anisotropy is extremely small, making wide viewing angles and high contrast ratio possible.
The polymer wall spacers bonding substrates are formed by irradiating a twisted-alignment LC layer including monomer component with patterned ultra-violet light through single thin substrate. While the substrate gap is more variable as the substrate thickness is decreased, the stabilization of ultra-thin substrates becomes possible by small pitch polymer walls.
The research team also demonstrated that the device uniformity is kept without breaking spacers even after a roll-up test to a curvature radius of 3mm for rollable and foldable applications.
The above research results show that LC displays with large-area, high-resolution and excellent stability can be as flexible as OLED displays. The super-flexible LC technology is applicable to mobile information terminals, wearable devices, in-vehicle displays and large digital signage.
Moving forward, the team plans to form image pixels and soften the peripheral components of polarizing films, and a thin light-guide sheet for backlight.
Learn more: Super-Flexible Liquid Crystal Device for Bendable and Rollable Displays
Receive an email update when we add a new FLEXIBLE DISPLAYS article.
The Latest on: Flexible displays
via Google News
The Latest on: Flexible displays
- Biodegradable display tackles e-waste problemon January 27, 2021 at 12:18 pm
Electronic scrap is a growing problem that needs to be addressed. Researchers from Karlsruhe Institute of Technology (KIT), Germany, created a biodegradable display that is a major step in the right ...
- Highly flexible VNA cables support frequencies up to 70 GHzon January 27, 2021 at 11:53 am
Pasternack’s new highly flexible VNA test cables display excellent electrical properties such as exceptional Source: Pasternack phase stability of +/- 6° at 50 GHz and +/- 8° at 70 GHz with flexure, ...
- Samsung’s reportedly ready to supply foldable displays to rival companieson January 27, 2021 at 11:22 am
A report from ETNews claims that Samsung Display is ready to expand its foldable-display business and start selling to companies other than Samsung Electronics' phone division. Flexible panels were ...
- Diagnostic Flexibility at Your Fingertips with New, Versatile 12MP Diagnostic Displayon January 27, 2021 at 1:20 am
Barco, a global leader in visualisation technology, has released a new 12MP healthcare diagnostic display system for picture archiving and communication systems (PACS) and breast imaging. The Nio ...
- China's BOE Spends USD980.7 Million to Raise Stake in Flexible AMOLED Display Planton January 26, 2021 at 10:55 pm
China's BOE Technology Group will splurge about CNY6.3 billion (USD980.7 million) to increase its stake in a sixth-generation active-matrix organic light-emitting diode display project in southwestern ...
- Xiaomi patents indicate they are working on a smartphone with a sliding displayon January 25, 2021 at 3:30 pm
It seems like flexible displays have finally found their place in the smartphone world. Folding phones haven’t been their best application (because folding screens leave a crease behind, and result in ...
- Scan Display launches affordable and flexible shopping kioskson January 24, 2021 at 9:18 pm
Branding and retail display specialist, Scan Display, has devised a new cost-effective solution for shopping kiosks. Its Showcase Kiosk range is available for short-term ...
- Biodegradable electronic display designed to help minimize e-wasteon January 22, 2021 at 1:58 pm
E-waste is a growing problem, so if an electronic component can't be reused or recycled, it should at least be biodegradable. That's where an experimental new electronic display comes in, as it can be ...
- Flexible Display Market Trends Global Industry Analysis, Top Manufacturers, Growth, Opportunities & Forecast to 2025on January 21, 2021 at 6:50 am
Selbyville, Delaware, The next five years the Flexible Display market will register a 28.9% CAGR in terms of revenue, the global market size will reach $ 10520 million by 2025, from $ 3809.1 million ...
via Bing News