
via www.nasa.gov
An accurate method for spacecraft navigation takes a leap forward today as the National Physical Laboratory (NPL) and the University of Leicester publish a paper that reveals a spacecraft’s position in space in the direction of a particular pulsar can be calculated autonomously, using a small X-ray telescope on board the craft, to an accuracy of 2km.
The method uses X-rays emitted from pulsars, which can be used to work out the position of a craft in space in 3D to an accuracy of 30 km at the distance of Neptune. Pulsars are dead stars that emit radiation in the form of X-rays and other electromagnetic waves. For a certain type of pulsar, called ‘millisecond pulsars’, the pulses of radiation occur with the regularity and precision of an atomic clock and could be used much like GPS in space.
The paper, published in Experimental Astronomy, details simulations undertaken using data, such as the pulsar positions and a craft’s distance from the Sun, for a European Space Agency feasibility study of the concept. The simulations took these data and tested the concept of triangulation by pulsars with current technology (an X-ray telescope designed and developed by the University of Leicester) and position, velocity and timing analysis undertaken by NPL. This generated a list of usable pulsars and measurements of how accurately a small telescope can lock onto these pulsars and calculate a location. Although most X-ray telescopes are large and would allow higher accuracies, the team focused on technology that could be small and light enough to be developed in future as part of a practical spacecraft subsystem. The key findings are:
– At a distance of 30 astronomical units – the approximate distance of Neptune from the Earth – an accuracy of 2km or 5km can be calculated in the direction of a particular pulsar, called PSR B1937+21, by locking onto the pulsar for ten or one hours respectively
– By locking onto three pulsars, a 3D location with an accuracy of 30km can be calculated
This technique is an improvement on the current navigation methods of the ground-based Deep Space Network (DSN) and European Space Tracking (ESTRACK) network as it:
– Can be autonomous with no need for Earth contact for months or years, if an advanced atomic clock is also on the craft. ESTRACK and DSN can only track a small number of spacecraft at a time, putting a limit on the number of deep space manoeuvres they can support for different spacecraft at any one time.
– In some scenarios, can take less time to estimate a location. ESTRACK and DSN are limited by the time delay between the craft and Earth which can be up to several hours for a mission at the outer planets and even longer outside the solar system.
Dr Setnam Shemar, Senior Research Scientist, NPL, said: “Our capability to explore the solar system has increased hugely over the past few decades; missions like Rosetta and New Horizons are testament to this. Yet how these craft navigate will in future become a limiting factor to our ambitions. The cost of maintaining current large ground-based communications systems based on radio waves is high and they can only communicate with a small number of craft at a time. Using pulsars as location beacons in space, together with a space atomic clock, allows for autonomy and greater capability in the outer solar system. The use of these dead stars in one form or another has the potential to become a new method for navigating in deep space and, in time, beyond the solar system.”
Dr John Pye, Space Research Centre Manager, University of Leicester, concludes:
“Up until now, the concept of pulsar-based navigation has been seen just as that – a concept. This simulation uses technology in the real world and proves its capabilities for this task. Our X-ray telescope can be feasibly launched into space due to its low weight and small size; indeed, it will be part of a mission to Mercury in 2018. NPL’s timing analysis capability has been developed over many years due to its long heritage in atomic clocks. We are entering a new era of space exploration as we delve deeper into our solar system, and this paper lays the foundations for a potential new technology that will get us there.”
Learn more: “GPS in space”: NPL and University of Leicester bring autonomous interplanetary travel closer to reality
The Latest on: Autonomous interplanetary travel
[google_news title=”” keyword=”autonomous interplanetary travel” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Autonomous interplanetary travel
- AI, autonomous systems, and digital connectivity could help ships cut emissionson November 30, 2023 at 5:10 am
The shipping industry is thought to be behind on its goal of using 5% zero-emission fuels by 2030. Autonomous and AI systems could help reduce ships' fuel use. Tech initiatives such as data sharing ...
- Autonomous Excavator Builds Stone Wall Algorithmicallyon November 30, 2023 at 12:48 am
In a move that aims to further the circular economy of the construction industry, researchers at ETH Zurich have let an autonomous excavator loose on a big pile of boulders and reclaimed concrete.
- Autonomous trucking: ‘What’s love got to do with it?’on November 10, 2023 at 3:00 am
Lior Ron is a fan of autonomous trucking. You might even say the founder and CEO of Uber Freight loves the idea of driverless trucks. But as the late Tina Turner asked, “What’s love go to do ...
- Autonomous cars: buying advice and informationon May 9, 2023 at 5:00 pm
Autonomous technology is going to change the way we travel, but it's already here. In this section we'll explain everything you need to know about driverless cars, from the technology to what you ...
- Autonomous weapon systemson March 30, 2023 at 3:12 am
Autonomous weapons are not a work of science fiction from a distant dystopian future. They are an immediate cause of humanitarian concern and demand an urgent, international political response.
- Autonomous University M.Phil. Tourism of Travel Management Collegeson November 21, 2021 at 3:08 pm
Autonomous University is a Autonomous university in . It is located in . Given below are the M.Phil. Tourism of Travel Management colleges affiliated to Autonomous University.
- Autonomous Drone Dodges Obstacles Without GPSon November 2, 2021 at 9:51 pm
A Raspberry Pi 4 running Robot Operating System runs the autonomous show, and a Teensy takes care of flight control duties. What we really enjoy about [Nick]’s video is his clear presentation of ...
- Autonomous Promo Codes 2023on October 20, 2021 at 2:46 pm
Score even better deals on bestselling chairs, desks, and office accessories when you use this coupon on your next order at Autonomous AI. Shop away to save another 5% at checkout!
- Three Ways Autonomous Technology Can (And Will) Transform Your Businesson August 3, 2021 at 5:40 am
When thinking of autonomous technology, most minds immediately conjure an image of self-driving cars in bustling cities, imagining how travel can become more enjoyable and safer for us all.
via Bing News