Scientists with Virginia Tech and the Lawrence Livermore National Laboratory have developed hierarchical metallic lattices that are super compressible and stretchable.
CREDIT
Xiaoyu “Rayne” Zheng/Virginia Tec
For years, scientists and engineers have synthesized materials at the nanoscale level to take advantage of their mechanical, optical, and energy properties, but efforts to scale these materials to larger sizes have resulted in diminished performance and structural integrity.
Now, researchers led by Xiaoyu “Rayne” Zheng, an assistant professor of mechanical engineering at Virginia Tech have published a study in the journal Nature Materials that describes a new process to create lightweight, strong and super elastic 3-D printed metallic nanostructured materials with unprecedented scalability, a full seven orders of magnitude control of arbitrary 3-D architectures.
Strikingly, these multiscale metallic materials have displayed super elasticity because of their designed hierarchical 3-D architectural arrangement and nanoscale hollow tubes, resulting in more than a 400 percent increase of tensile elasticity over conventional lightweight metals and ceramic foams.
The approach, which produces multiple levels of 3-D hierarchical lattices with nanoscale features, could be useful anywhere there’s a need for a combination of stiffness, strength, low-weight, high flexibility — such as in structures to be deployed in space, flexible armors, lightweight vehicles and batteries, opening the door for applications in aerospace, military and automotive industries.
Natural materials, such as trabecular bone and the toes of geckoes, have evolved with multiple levels 3-D architectures spanning from the nanoscale to the macroscale. Human-made materials have yet to achieve this delicate control of structural features.
“Creating 3-D hierarchical micro features across the entire seven orders of magnitude in structural bandwidth in products is unprecedented,” said Zheng, the lead author of the study and the research team leader. “Assembling nanoscale features into billets of materials through multi-leveled 3-D architectures, you begin to see a variety of programmed mechanical properties such as minimal weight, maximum strength and super elasticity at centimeter scales.”
The process Zheng and his collaborators use to create the material is an innovation in a digital light 3-D printing technique that overcomes current tradeoffs between high resolution and build volume, a major limitation in scalability of current 3-D printed microlattices and nanolattices.
Related materials that can be produced at the nanoscale such as graphene sheets can be 100 times stronger than steel, but trying to upsize these materials in three dimensions degrades their strength eight orders of magnitude – in other words, they become 100 million times less strong.
“The increased elasticity and flexibility obtained through the new process and design come without incorporating soft polymers, thereby making the metallic materials suitable as flexible sensors and electronics in harsh environments, where chemical and temperature resistance are required,” Zheng added.
These multi-leveled hierarchical lattice also means more surface area is available to collect photons energies as they can enter the structure from all directions and be collected not just on the surface, like traditional photovoltaic panels, but also inside the lattice structure. One of the great opportunities this study creates is the ability to produce multi-functional inorganic materials such as metals and ceramics to explore photonic and energy harvesting properties in these new materials
Besides Zheng, team members include Virginia Tech graduate research students Huachen Cui and Da Chen from Zheng’s group, and colleagues from Lawrence Livermore National Laboratory.
Learn more:Â Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials
The Latest on: Flexible 3-D printed materials
via Google News
The Latest on: Flexible 3-D printed materials
- Student startup ‘Limber’ makes 3D-printed prostheses affordable and accessibleon May 19, 2022 at 5:06 pm
Student startup Limber is working to provide prosthetics to some of the millions of amputees worldwide lacking access.
- A 3D printed orthotic device made from castor oilon May 19, 2022 at 4:19 am
Alternatives to plastic are finding increasing utility in 3D printing applications. The latest example: A 3D printed orthosis made from castor oil. The orthosis is designed by company Daniel Robert ...
- 3D-printing robot enables sustainable constructionon May 18, 2022 at 5:14 am
The Bovay Civil Infrastructure Laboratory Complex, located in the basement of Thurston Hall, has a new tenant: a roughly 6,000-pound industrial robot capable of 3D printing the kind of large-scale ...
- Molding Flexible Linkson May 16, 2022 at 5:00 pm
The link consists of two 3D printed hubs, connected by a flexible material cast in a 3D printed mold. [RobotGrrl] recommends using Sugru to create the link, but you can use homemade Oogoo as a low ...
- First Sustainable 3D-Printing Filaments from Braskemon May 9, 2022 at 2:22 pm
Three new options for additive printing are bio-based EVA and a recycled PE/PP blend with or without carbon fiber made from recycled bottle caps.
- The Earth Moc, a biomimetic 3D printed shoeon May 6, 2022 at 3:01 pm
In collaboration with 3D printer manufacturer Sintratec, designer Daniel Shirley designed the Earth Moc, an entirely 3D printed hiking shoe.
- 3D Printing Flexible Surfaces Out Of Non-Flexible Materialon April 18, 2022 at 5:00 pm
Here’s some interesting work shared by [Ben Kromhout] and [Lukas Lambrichts] on making flexible ... the material into a giant kerf bend – they got interested in whether one could 3D print ...
- New Platform Combines 3D Printing and Injection Molding to Produce Flexible Partson March 30, 2022 at 5:00 pm
Structur3D now has launched the Inj3ctor platform, which injects 3D-printed molds with factory-grade liquid materials to create flexible parts. Working with Stanley engineers, Structur3D was able to ...
- 3D-Printed Flexible Mesh Eyed for Knee, Ankle Braceson March 29, 2022 at 5:00 pm
Inspired by this molecular structure, Pattinson designed wavy patterns that he then 3D-printed in a thermoplastic polyurethane material. He then designed and fabricated a mesh configuration in the ...
via Bing News