
GUILAK LABORATORY
A 3-D, biodegradable, synthetic scaffold has been molded into the precise shape of a hip joint. The scaffold is covered with cartilage made from stem cells taken from fat beneath the skin.
Technique uses 3-D weaving to grow a living hip replacement
With a goal of treating worn, arthritic hips without extensive surgery to replace them, scientists have programmed stem cells to grow new cartilage on a 3-D template shaped like the ball of a hip joint. What’s more, using gene therapy, they have activated the new cartilage to release anti-inflammatory molecules to fend off a return of arthritis.
The technique, demonstrated in a collaborative effort between Washington University School of Medicine in St. Louis and Cytex Therapeutics Inc. in Durham, N.C., is described July 18 in Proceedings of the National Academy of Sciences.
The discovery one day may provide an alternative to hip-replacement surgery, particularly in younger patients. Doctors are reluctant to perform such operations in patients under age 50 because prosthetic joints typically last for less than 20 years. A second joint-replacement surgery to remove a worn prosthetic can destroy bone and put patients at risk for infection.
“Replacing a failed prosthetic joint is a difficult surgery,” said Farshid Guilak, PhD, a professor of orthopedic surgery at Washington University. “We’ve developed a way to resurface an arthritic joint using a patient’s own stem cells to grow new cartilage, combined with gene therapy to release anti-inflammatory molecules to keep arthritis at bay. Our hope is to prevent, or at least delay, a standard metal and plastic prosthetic joint replacement.”
The technique uses a 3-D, biodegradable synthetic scaffold that Guilak and his team developed. The scaffold, molded into the precise shape of a patient’s joint, is covered with cartilage made from the patient’s own stem cells taken from fat beneath the skin. The scaffold then can be implanted onto the surface of an arthritic hip, for example. Resurfacing the hip joint with “living” tissue is designed to ease arthritis pain, and delay or even eliminate the need for joint-replacement surgery in some patients.
Additionally, by inserting a gene into the newly grown cartilage and activating it with a drug, the gene can orchestrate the release of anti-inflammatory molecules to fight a return of arthritis, which usually is what triggers such joint problems in the first place.
“When there is inflammation, we can give a patient a simple drug, which activates the gene we’ve implanted, to lower inflammation in the joint,” said Guilak, also a professor of developmental biology and of biomedical engineering. “We can stop giving the drug at any time, which turns off the gene.”
That gene therapy is important, he explained, because when levels of inflammatory molecules rise in a joint, the cartilage is destroyed and pain increases. By adding gene therapy to the stem cell and scaffold technique, Guilak and his colleagues believe it will be possible to coax patients’ joints to fend off arthritis and function better for a longer time.
The 3-D scaffold is built using a weaving pattern that gives the device the structure and properties of normal cartilage. Franklin Moutos, PhD, vice president of technology development at Cytex, explained that the unique structure is the result of approximately 600 biodegradable fiber bundles woven together to create a high-performance fabric that can function like normal cartilage.
“As evidence of this, the woven implants are strong enough to withstand loads up to 10 times a patient’s body weight, which is typically what our joints must bear when we exercise,” Moutos said.
Currently, there are about 30 million Americans who have diagnoses of osteoarthritis, and data suggest that the incidence of osteoarthritis is on the rise. That number includes many younger patients — ages 40 to 65 — who have limited treatment options because conservative approaches haven’t worked and they are not yet candidates for total joint replacement because of their ages.
Bradley Estes, PhD, vice president of research and development at Cytex, noted, “We envision in the future that this population of younger patients may be ideal candidates for this type of biological joint replacement.”
Guilak, who also is the director of research at Shriners Hospitals for Children — St. Louis, and co-director of the Washington University Center of Regenerative Medicine, has been collaborating with Cytex on this research. The scientists have tested various aspects of the tissue engineering in cell culture, and some customized implants already are being tested in laboratory animals. He said if all goes well, such devices could be ready for safety testing in humans in three to five years.
Learn more: Stem cells engineered to grow cartilage, fight inflammation
The Latest on: Stem cells to grow new cartilage
via Google News
The Latest on: Stem cells to grow new cartilage
- Stem Cell & Regenerative Medicine Market Size, Share, Trends, Growth Insight, Share, Competitive Analysis, Statistics, Regional And Forecaston January 22, 2021 at 7:13 pm
Jan (AmericaNewsHour) -- The report titled "Global Stem Cell & Regenerative Medicine Market Outlook: Industry Demand Analysis & ...
- Outlook on the Mesenchymal Stem Cells Global Market to 2021-2026 Impact Analysis of COVID-19on January 21, 2021 at 1:24 am
Jan (Market Insight Reports) -- Selbyville, Delaware, Global Mesenchymal Stem Cells Market Report added at Market Study Report LLC offers ...
- Designer DNA molecule helps hunt down cancer stem cells in bloodon January 20, 2021 at 10:03 pm
Like weeds that grow back if you don’t remove the roots, cancer can keep returning thanks to lurking stem cells. Now, researchers have developed a “designer” DNA segment that can eradicate these ...
- Histogen Reports FDA Clinical Hold for Planned Phase 1/2 Trial of HST-003 for Knee Cartilage ...on January 19, 2021 at 2:24 pm
Histogen has not yet received the written notice of its clinical hold from the FDA, which the FDA expects to provide to the company by February 12, 2021. Based upon the verbal communication with FDA, ...
- Stem cells with regenerative abilities could be closer on the horizon, shows studyon January 14, 2021 at 8:29 pm
A new type of stem cell - that is, a cell with regenerative abilities - could be closer on the horizon, a new study led by UNSW Sydney shows.
- Scientists Reprogram Fat Cells to Repair Injurieson January 14, 2021 at 8:15 am
"While these findings are very exciting, I will keep a lid on my excitement until we get this through to patients." ...
- Scientists are a step closer to developing 'smart' stem cells – and they're made from human faton January 14, 2021 at 5:38 am
A new type of stem cell—that is, a cell with regenerative abilities—could be closer on the horizon, a new study led by UNSW Sydney shows.
- Platelets boost stem cell function through mitochondrial donationon January 7, 2021 at 7:32 am
Mesenchymal stem cells are both a success story and underperformers. Globally, there are 10 approved MSC-based therapies in nearly as many indications, although none of them have been approved by the ...
- Stem Cell Cartilage Regeneration Market : Revenue, Growth, Business Outlook & Forecast 2020-2029on December 30, 2020 at 12:46 am
Pune, Maharashtra, India, December 30 2020 (Wiredrelease) MarketResearch.Biz –:Marketresearch.biz added a new report Global Stem ... assessed based on how the Stem Cell Cartilage Regeneration market ...
- The Intra-articular Injection of Stem Cells as Therapy for Articular Cartilage Repair - What is the Evidence?on August 12, 2020 at 11:19 pm
it remains a challenge in tissue engineering pursuits to grow articular cartilage to a physiological and biomechanical standard. Recently, the intraarticular (I/A) injection of autologous adult stem ...
via Bing News