Atoms in silicon dioxide are hit by the yellow light wave (from the left) causing the electrons around each atom to oscillate. This displacement absorbs energy from the light wave. At the end of the cycles the absorbed energy is returned to the light wave. Recording of the temporal evolution of the light field after passage through the sample allows the first real-time observation of the attosecond-speed electron motion inside solids.
Graphic: Christian Hackenberger
A team of scientists optimized the interaction of light and glass in a way that facilitates its possible future usage for light wave driven electronics.
Light waves might be able to drive future transistors. The electromagnetic waves of light oscillate approximately one million times in a billionth of a second, hence with petahertz frequencies. In principle also future electronics could reach this speed and become 100.000 times faster than current digital electronics. This requires a better understanding of the sub-atomic electron motion induced by the ultrafast electric field of light. Now a team of the Laboratory for Attosecond Physics (LAP) at the Max-Planck Institute of Quantum Optics (MPQ) and the Ludwig-Maximilians-Universität (LMU) and theorists from the University of Tsukuba combined novel experimental and theoretical techniques which provide direct access to this motion for the first time.
Electron movements form the basis of electronics as they facilitate the storage, processing and transfer of information. State-of-the-art electronic circuits have reached their maximum clock rates at some billion switching cycles per second as they are limited by the heat accumulating in the process of switching power on and off.
The electric field of light changes its direction a trillion times per second and is able to move electrons in solids at this speed. This means that light waves can form the basis for future electronic switching if the induced electron motion and its influence on heat accumulation is precisely understood. Physicists from the Laboratory for Attosecond Physics at the MPQ and the LMU already found out that it is possible to manipulate the electronic properties of matter at optical frequencies (Nature, doi: 10.1038/nature11567, Nature, doi: 10.1038/nature11720, both published 5.Dezember 2012).
In a follow-up experiment the researchers now, in a similar way as in their previous approach, shot extremely strong, few femtosecond- laser pulses (one femtosecond is a millionth part of a second) onto glass (silicon dioxide). The light pulse only includes one single strong oscillation cycle of the field, hence the electrons are moved left and right only once. The full temporal characterization of the light field after transmission through the thin glass plate now for the first time provides direct insight into the attosecond electron dynamics, induced by the light pulse in the solid.
This measurement technique reveals that electrons react with a delay of only some ten attoseconds (one attosecond is a billionth of a billionth of a second) to the incoming light. This time-delay in the reaction determines the energy transferred between light and matter. Since it is possible to measure this energy exchange within one light cycle for the first time the parameters of the light matter interaction can be understood and optimized for ultimate fast signal processing. The more reversible the exchange is and the smaller the amount of energy which is left behind in the medium after the light pulse is gone, the better the interaction is suitable for future light field-driven electronics.
To understand the observed phenomena and identify the best set of experimental parameters to that end, the experiments were backed up by a novel simulation method based on first principles developed at the Center for Computational Sciences at University of Tsukuba. The theorists there used the K computer, currently the 4-th fastest supercomputer in the world to compute the electron movement inside solids with unprecedented accuracy.
The researchers succeeded in optimizing the energy consumption by adapting the amplitude of the light field. At certain field strengths energy is transferred from the field to the solid during the first half of the pulse cycle and is almost completely emitted back in the second half of the light. These findings verify that a potential switching medium for future light-driven electronics would not overheat. The ’cool relationship’ between glass and light might provide an opportunity to dramatically accelerate electronic signal- and data processing, up to its ultimate frontiers. Thorsten Naeser
Learn more:Â A switch for light wave electronics
The Latest on: Light wave electronics
via Google News
The Latest on: Light wave electronics
- Lightwave Microwave Oven Market Size and Growth 2022 Analysis Report by Distribution Status, Players, Market Analysis and Forecast to 2028on August 4, 2022 at 10:08 am
The global major manufacturers of Lightwave Microwave Oven include LG Electronics, Samsung Electronics, Whirlpool Corporation, Hitachi, Ltd., Panasonic Corporation, Midea, AB Electrolux ...
- Planar Lightwave Circuit Splitter Market Technology Advancement and Future Scope Till 2028 – Huihong Technologies, Fiberon Technologieson August 3, 2022 at 12:01 am
The Planar Lightwave Circuit Splitter Market is expected to grow at a CAGR of 6.0% during the forecast period 2022-2028. Top Companies in the Global Planar Lightwave Circuit Splitter Market: Corning, ...
- Cisco: Li-Fi can reach around cornerson July 27, 2022 at 6:50 am
Because Li-Fi remains a relatively lesser known technology, we offer our usual refresher: Li-Fi, or light fidelity, is a technology that uses modulated light waves from LEDs to transmit data. It is ...
- Electrical Engineering Electives by Focus Areaon July 20, 2022 at 5:45 pm
Topics include basic electro-mechanics, rotating machinery, dc machines, ac machines, power electronics and load modeling. Applications include industrial systems, hybrid/electric vehicles and ...
- LightWave 3D Creates a Virtual Set for TV, Movieson July 18, 2022 at 5:00 pm
To realize this sci-fi drama's virtual set, producers use LightWave 3D 11.5, the latest version of the software (watch a demo below). Apart from the monetary advantage, the visual effects supervisor ...
- Photographing a light helixon July 12, 2022 at 1:00 am
Physicists from the ultrafast electronics and nanophotonics group ... the physicists have introduced a new approach to lightwave measurement. As a first application, scientists Johannes Blöchl ...
- Microwave Devices Market Growth Boosted By...on July 7, 2022 at 8:40 am
Smart Microwave Ovens Global Market Report 2022 – By Product Type (Grill Microwave Oven, Convection Microwave Oven, Microwave/Light-wave Oven), By Technology (Bluetooth, Wi-Fi, NFC), By ...
- Lightwave Dental Continues Mid-Atlantic Expansion; Adds Chris Suscha as Chief Development Officeron June 29, 2022 at 5:45 am
WOODBRIDGE, Va., June 29, 2022--(BUSINESS WIRE)--Lightwave Dental (Lightwave) has experienced significant growth as a leading management services partner for top dentists in the mid-Atlantic region.
- CEG Memberon May 17, 2019 at 3:31 pm
Wysocki, “Compact Quantum Cascade Laser Based Atmospheric CO2 Sensor”, in Quantum Electronics and Laser Science Conference ... based on bragg fiber dual-tapers”, in Journal of Lightwave Technology, ...
via Bing News