Researchers have developed a new method to overcome one of the main issues in implementing a quantum cryptography system, raising the prospect of a useable ‘unbreakable’ method for sending sensitive information hidden inside particles of light.
By ‘seeding’ one laser beam inside another, the researchers, from the University of Cambridge and Toshiba Research Europe, have demonstrated that it is possible to distribute encryption keys at rates between two and six orders of magnitude higher than earlier attempts at a real-world quantum cryptography system. The results are reported in the journal Nature Photonics.
Encryption is a vital part of modern life, enabling sensitive information to be shared securely. In conventional cryptography, the sender and receiver of a particular piece of information decide the encryption code, or key, up front, so that only those with the key can decrypt the information. But as computers get faster and more powerful, encryption codes get easier to break.
Quantum cryptography promises ‘unbreakable’ security by hiding information in particles of light, or photons, emitted from lasers. In this form of cryptography, quantum mechanics are used to randomly generate a key. The sender, who is normally designated as Alice, sends the key via polarised photons, which are sent in different directions. The receiver, normally designated as Bob, uses photon detectors to measure which direction the photons are polarised, and the detectors translate the photons into bits, which, assuming Bob has used the correct photon detectors in the correct order, will give him the key.
The strength of quantum cryptography is that if an attacker tries to intercept Alice and Bob’s message, the key itself changes, due to the properties of quantum mechanics. Since it was first proposed in the 1980s, quantum cryptography has promised the possibility of unbreakable security. “In theory, the attacker could have all of the power possible under the laws of physics, but they still wouldn’t be able to crack the code,” said the paper’s first author Lucian Comandar, a PhD student at Cambridge’s Department of Engineering and Toshiba’s Cambridge Research Laboratory.
However, issues with quantum cryptography arise when trying to construct a useable system. In reality, it is a back and forth game: inventive attacks targeting different components of the system are constantly being developed, and countermeasures to foil attacks are constantly being developed in response.
The components that are most frequently attacked by hackers are the photon detectors, due to their high sensitivity and complex design – it is usually the most complex components that are the most vulnerable. As a response to attacks on the detectors, researchers developed a new quantum cryptography protocol known as measurement-device-independent quantum key distribution (MDI-QKD).
In this method, instead of each having a detector, Alice and Bob send their photons to a central node, referred to as Charlie. Charlie lets the photons pass through a beam splitter and measures them. The results can disclose the correlation between the bits, but not disclose their values, which remain secret. In this set-up, even if Charlie tries to cheat, the information will remain secure.
MDI-QKD has been experimentally demonstrated, but the rates at which information can be sent are too slow for real-world application, mostly due to the difficulty in creating indistinguishable particles from different lasers. To make it work, the laser pulses sent through Charlie’s beam splitter need to be (relatively) long, restricting rates to a few hundred bits per second (bps) or less.
The method developed by the Cambridge researchers overcomes the problem by using a technique known as pulsed laser seeding, in which one laser beam injects photons into another. This makes the laser pulses more visible to Charlie by reducing the amount of ‘time jitter’ in the pulses, so that much shorter pulses can be used. Pulsed laser seeding is also able to randomly change the phase of the laser beam at very high rates.
The result of using this technique in a MDI-QKD setup would enable rates as high as 1 megabit per second, representing an improvement of two to six orders of magnitude over previous efforts.
“This protocol gives us the highest possible degree of security at very high clock rates,” said Comandar. “It could point the way to a practical implementation of quantum cryptography.”
Learn more: Laser technique promises super-fast and super-secure quantum cryptography
The Latest on: Quantum cryptography
via Google News
The Latest on: Quantum cryptography
- Effective routing design for remote entanglement generation on quantum networkson January 27, 2021 at 6:09 am
Quantum network is a promising platform for many ground-breaking applications that lie beyond the capability of its classical counterparts. Efficient entanglement generation on quantum networks with ...
- Quantum Numbers Corp. Appoints Cyber Security and Integrated Circuit Expert to Its Board ofon January 27, 2021 at 5:52 am
Quantum Numbers Corp. Appoints Cyber Security and Integrated Circuit Expert to Its Board of. MONTREAL, Jan 27, 2021 (GLOBE NEWSWIRE) - ...
- Quantum Numbers Corp. Appoints Cyber Security and Integrated Circuit Expert to Its Board of Directorson January 27, 2021 at 5:11 am
Quantum Numbers Corp. (“QNC” or the “Corporation”) (TSX-V: QNC; OTCMKTS: QNCCF; F: 34Q) is pleased to announce the appointment of Dr. Edward Moore to its Board of Directors. With the successful ...
- Iran runs Quantum Cryptographic Teston January 26, 2021 at 9:26 pm
Quantum cryptography allows for the broadcasting of information between multiple parties in a perfectly secure manner under the sole assumption that the laws of quantum physics are valid ...
- Iran Tests Home-Grown Quantum Cryptography On Longer Distanceon January 26, 2021 at 12:56 pm
Researchers at the Atomic Energy Organization of Iran (AEOI) have successfully tested a home-grown version of the quantum key distribution (QKD) technology on a relatively long distance of 1,650 ...
- Physicists use 'hyperchaos' to model complex quantum systems at a fraction of the computing poweron January 26, 2021 at 6:40 am
Physicists have discovered a potentially game-changing feature of quantum bit behavior which would allow scientists to simulate complex quantum systems without the need for enormous computing power.
- KEMTLS: Cloudflare trials new encryption mechanism in anticipation of post-quantum TLS shortcomingson January 25, 2021 at 7:59 am
With quantum computing looming on the horizon, Cloudflare says it has been trialing the KEMTLS protocol and plans to use post-quantum cryptography for most internal services by the end of this year.
- Quantum connection is made by flying droneson January 23, 2021 at 8:23 am
A pair of airborne drones has been used to create a quantum communications channel between two ground stations 1 km apart. The system was developed by Hua-Ying Liu and colleagues at Nanjing University ...
- China: The Quantum Competition We Can’t Ignoreon January 21, 2021 at 5:20 am
With the talents of companies like IBM, Intel, Toshiba, JPMorgan and Goldman Sachs reporting a steady stream of quantum innovations, the fight isn’t over.
- Quantum Cryptography Solutions Market Size with Focus on Emerging Technologies, Competitive Landscape, Regional Analysis and Forecasts to 2025on January 20, 2021 at 7:27 pm
Jan (The Expresswire) -- "Final Report will add the analysis of the impact of COVID-19 on this industry." Global “Quantum Cryptography ...
via Bing News