Researchers have developed a new method to overcome one of the main issues in implementing a quantum cryptography system, raising the prospect of a useable ‘unbreakable’ method for sending sensitive information hidden inside particles of light.
By ‘seeding’ one laser beam inside another, the researchers, from the University of Cambridge and Toshiba Research Europe, have demonstrated that it is possible to distribute encryption keys at rates between two and six orders of magnitude higher than earlier attempts at a real-world quantum cryptography system. The results are reported in the journal Nature Photonics.
Encryption is a vital part of modern life, enabling sensitive information to be shared securely. In conventional cryptography, the sender and receiver of a particular piece of information decide the encryption code, or key, up front, so that only those with the key can decrypt the information. But as computers get faster and more powerful, encryption codes get easier to break.
Quantum cryptography promises ‘unbreakable’ security by hiding information in particles of light, or photons, emitted from lasers. In this form of cryptography, quantum mechanics are used to randomly generate a key. The sender, who is normally designated as Alice, sends the key via polarised photons, which are sent in different directions. The receiver, normally designated as Bob, uses photon detectors to measure which direction the photons are polarised, and the detectors translate the photons into bits, which, assuming Bob has used the correct photon detectors in the correct order, will give him the key.
The strength of quantum cryptography is that if an attacker tries to intercept Alice and Bob’s message, the key itself changes, due to the properties of quantum mechanics. Since it was first proposed in the 1980s, quantum cryptography has promised the possibility of unbreakable security. “In theory, the attacker could have all of the power possible under the laws of physics, but they still wouldn’t be able to crack the code,” said the paper’s first author Lucian Comandar, a PhD student at Cambridge’s Department of Engineering and Toshiba’s Cambridge Research Laboratory.
However, issues with quantum cryptography arise when trying to construct a useable system. In reality, it is a back and forth game: inventive attacks targeting different components of the system are constantly being developed, and countermeasures to foil attacks are constantly being developed in response.
The components that are most frequently attacked by hackers are the photon detectors, due to their high sensitivity and complex design – it is usually the most complex components that are the most vulnerable. As a response to attacks on the detectors, researchers developed a new quantum cryptography protocol known as measurement-device-independent quantum key distribution (MDI-QKD).
In this method, instead of each having a detector, Alice and Bob send their photons to a central node, referred to as Charlie. Charlie lets the photons pass through a beam splitter and measures them. The results can disclose the correlation between the bits, but not disclose their values, which remain secret. In this set-up, even if Charlie tries to cheat, the information will remain secure.
MDI-QKD has been experimentally demonstrated, but the rates at which information can be sent are too slow for real-world application, mostly due to the difficulty in creating indistinguishable particles from different lasers. To make it work, the laser pulses sent through Charlie’s beam splitter need to be (relatively) long, restricting rates to a few hundred bits per second (bps) or less.
The method developed by the Cambridge researchers overcomes the problem by using a technique known as pulsed laser seeding, in which one laser beam injects photons into another. This makes the laser pulses more visible to Charlie by reducing the amount of ‘time jitter’ in the pulses, so that much shorter pulses can be used. Pulsed laser seeding is also able to randomly change the phase of the laser beam at very high rates.
The result of using this technique in a MDI-QKD setup would enable rates as high as 1 megabit per second, representing an improvement of two to six orders of magnitude over previous efforts.
“This protocol gives us the highest possible degree of security at very high clock rates,” said Comandar. “It could point the way to a practical implementation of quantum cryptography.”
Learn more: Laser technique promises super-fast and super-secure quantum cryptography
The Latest on: Quantum cryptography
via Google News
The Latest on: Quantum cryptography
- IIT Guwahati Scientists gain international recognition for their work on Quantum Entanglementon January 20, 2021 at 6:08 pm
A research team at IIT Guwahati, led by Prof. Amarendra Kumar Sarma, Professor, Department of Physics, have studied the workings of quantum entanglement, a phenomenon that continues to ...
- Securing the DNS in a Post-Quantum World: New DNSSEC Algorithms on the Horizonon January 18, 2021 at 4:00 pm
One of the "key" questions cryptographers have been asking for the past decade or more is what to do about the potential future development of a large-scale quantum computer. If theory holds, a ...
- Danish group launches €3 million quantum communication projecton January 18, 2021 at 12:14 pm
CryptQ is a newly-announced Danish consortium, which is aiming to develop a cost-effective quantum-secured communication system over the next three years. Innovation Fund Denmark has invested €3 ...
- Quantum Announces Appointment of Francis Bellido as CEOon January 18, 2021 at 5:21 am
(GLOBE NEWSWIRE) -- Quantum Numbers Corp. (“Quantum” or the “Corporation”) (TSX-V: QNC) is pleased to announce the appointment of Mr. Francis Bellido as Chief Executive Officer (“CEO”). With its ...
- Quantum Announces Closing of Private Placementon January 15, 2021 at 3:52 pm
(GLOBE NEWSWIRE) -- Quantum Numbers Corp. (“Quantum” or the “Corporation”) (TSX-V: QNC) is pleased to announce that it has closed a non-brokered private placement by issuing a total of 40,000,000 ...
- Quantum Cryptography Market Key Drivers, Industry Share and Future Growth Demand Analysis by 2026on January 14, 2021 at 4:52 pm
Improving network infrastructure backed by increasing demand for 5G network is anticipated to drive the global ...
- Quantum Drones Take Flighton January 14, 2021 at 4:00 pm
A small prototype of a drone-based quantum network has successfully relayed a quantum signal over a kilometer of free space.
- Quantum Entanglement of Electrons Using Heaton January 10, 2021 at 9:11 am
Quantum entanglement is key for next-generation computing and communications technology, Aalto researchers can now produce it using temperature differences. A joint group of scientists from Finland, ...
- Scientists entangle atoms using heaton January 8, 2021 at 7:06 am
An international team of scientists has shown that temperature differences in a superconductor can be used to trigger quantum entanglement.
- Three Practical Steps To Prepare Your Business For The Quantum Threaton January 8, 2021 at 4:00 am
Chances are you’ve been hearing more and more about quantum computing. In the last year alone, the U.S. government has pledged to commit more than $1 billion in funds and awards to quantum information ...
via Bing News