Magnetic microscope image of three nanomagnetic computer bits. Each bit is a tiny bar magnet only 90 nanometers long. The microscope shows a bright spot at the “North” end and a dark spot at the “South” end of the magnet. The “H” arrow shows the direction of magnetic field applied to switch the direction of the magnets.
CREDIT
Image by Jeongmin Hong and Jeffrey Bokor
In a breakthrough for energy-efficient computing, engineers at the University of California, Berkeley, have shown for the first time that magnetic chips can operate with the lowest fundamental level of energy dissipation possible under the laws of thermodynamics.
The findings, to be published Friday, March 11, 2016 in the peer-reviewed journal Science Advances, mean that dramatic reductions in power consumption are possible — as much as one-millionth the amount of energy per operation used by transistors in modern computers.
This is critical for mobile devices, which demand powerful processors that can run for a day or more on small, lightweight batteries. On a larger, industrial scale, as computing increasingly moves into ‘the cloud,’ the electricity demands of the giant cloud data centers are multiplying, collectively taking an increasing share of the country’s — and world’s — electrical grid.
“We wanted to know how small we could shrink the amount of energy needed for computing,” said senior author Jeffrey Bokor, a UC Berkeley professor of electrical engineering and computer sciences and a faculty scientist at the Lawrence Berkeley National Laboratory. “The biggest challenge in designing computers and, in fact, all our electronics today is reducing their energy consumption.”
Lowering energy use is a relatively recent shift in focus in chip manufacturing after decades of emphasis on packing greater numbers of increasingly tiny and faster transistors onto chips.
“Making transistors go faster was requiring too much energy,” said Bokor, who is also the deputy director the Center for Energy Efficient Electronics Science, a Science and Technology Center at UC Berkeley funded by the National Science Foundation. “The chips were getting so hot they’d just melt.”
Researchers have been turning to alternatives to conventional transistors, which currently rely upon the movement of electrons to switch between 0s and 1s. Partly because of electrical resistance, it takes a fair amount of energy to ensure that the signal between the two states is clear and reliably distinguishable, and this results in excess heat.
Magnetic computing
Magnetic computing emerged as a promising candidate because the magnetic bits can be differentiated by direction, and it takes just as much energy to get the magnet to point left as it does to point right.
“These are two equal energy states, so we don’t throw energy away creating a high and low energy,” said Bokor.
Bokor teamed up with UC Berkeley postdoctoral researcher Jeongmin Hong, UC Berkeley graduate student Brian Lambson and Scott Dhuey at the Berkeley Lab’s Molecular Foundry, where the nanomagnets used in the study were fabricated.
They experimentally tested and confirmed the Landauer limit, named after IBM Research Lab’s Rolf Landauer, who in 1961 found that in any computer, each single bit operation must expend an absolute minimum amount of energy.
Landauer’s discovery is based on the second law of thermodynamics, which states that as any physical system is transformed, going from a state of higher concentration to lower concentration, it gets increasingly disordered. That loss of order is called entropy, and it comes off as waste heat.
Landauer developed a formula to calculate this lowest limit of energy required for a computer operation. The result depends on the temperature of the computer; at room temperature, the limit amounts to about 3 zeptojoules, or one-hundredth the energy given up by a single atom when it emits one photon of light.
The UC Berkeley team used an innovative technique to measure the tiny amount of energy dissipation that resulted when they flipped a nanomagnetic bit. The researchers used a laser probe to carefully follow the direction that the magnet was pointing as an external magnetic field was used to rotate the magnet from “up” to “down” or vice versa.
They determined that it only took 15 millielectron volts of energy – the equivalent of 3 zeptojoules – to flip a magnetic bit at room temperature, effectively demonstrating the Landauer limit.
This is the first time that a practical memory bit could be manipulated and observed under conditions that would allow the Landauer limit to be reached, the authors said. Bokor and his team published a paper in 2011 that said this could theoretically be done, but it had not been demonstrated until now.
While this paper is a proof of principle, he noted that putting such chips into practical production will take more time. But the authors noted in the paper that “the significance of this result is that today’s computers are far from the fundamental limit and that future dramatic reductions in power consumption are possible.”
Learn more:Â Experiment shows magnetic chips could dramatically increase computing’s energy efficiency
The Latest on: Magnetic chips
via Google News
The Latest on: Magnetic chips
- 5 of the best-sounding headphones we listened to at High End Munich 2022on May 23, 2022 at 9:46 am
After two years without High End Munich, the otherwise-annual internationally renowned audio exhibition did not let us down – and if you're looking for the best audiophile headphones money can by, ...
- Unique Quantum Material Could Enable Incredibly Powerful, Ultra-Compact Computerson May 21, 2022 at 5:46 pm
Columbia University chemists and physicists find a link between tunable electronic and magnetic properties in a 2D semiconductor, with potential applications in spintronics, quantum computing, and ...
- Unique quantum material could enable ultra-powerful, compact computerson May 20, 2022 at 1:26 pm
Information in computers is transmitted through semiconductors by the movement of electrons and stored in the direction of the electron spin in magnetic materials. To shrink devices while improving ...
- Near Field Communication Market 2022 Overview, Demand, New Opportunities and SWOT Analysis by 2030on May 19, 2022 at 3:25 am
Quadintel published a new report on the Near Field Communication Market. The research report consists of thorough information about demand, growth, ...
- More precise diagnoses and personalized therapies due to hyperpolarized nuclear magnetic resonanceon May 17, 2022 at 8:01 am
Hyperpolarized nuclear magnetic resonance enables major medical ... quantum microscope based on the characterized nano diamond chips and demonstrated in feasibility studies both hyperpolarization ...
- Beltless Magnetic Conveyors Market Size 2022, share Industry Growing Rapidly with Recent Demand, Trends, Development, Revenue and Forecast to 2028on May 17, 2022 at 6:17 am
Magnetic Slide Conveyors, commonly referred to as Beltless Magnetic conveyors are typically used to convey a wide variety of ferrous loads ranging from machine chips and scrap to parts, fasteners and ...
- Bright Future for Nanophotonic Chips with Topological Rainbow Deviceon May 16, 2022 at 2:17 am
A recently published paper demonstrated an effective method to realize on-chip nanophotonic topological rainbow devices using the concept of synthetic dimensions.
- magnetic hockeyon May 12, 2022 at 5:00 pm
So [Andrew Fentem]’s magnetic hockey project certainly pushes ... Of course, if your budget doesn’t stretch to not one but two chips in this era of semiconductor shortages, you can always ...
- Researchers use light for thermomagnetic recording on silicon waveguideon May 10, 2022 at 9:48 am
Researchers have demonstrated, for the first time, light-induced thermomagnetic recording in a magnetic thin-film on silicon waveguides. The new writing technique is poised to enable miniature ...
- The best MagSafe adapters for your Android phoneon May 9, 2022 at 5:00 pm
The magnetic technology allows you to attach wireless ... This is why MagSafe is awesome Certain MagSafe accessories also come with an NFC chip onboard to communicate with your device.
via Bing News