Scientists at the University of East Anglia are getting closer to solving the problem of antibiotic resistance.
New research published today in the journal Nature reveals the mechanism by which drug-resistant bacterial cells maintain a defensive barrier.
The findings pave the way for a new wave of drugs that kill superbugs by bringing down their defensive walls rather than attacking the bacteria itself. It means that in future, bacteria may not develop drug-resistance at all.
Unravelling this mechanism could also help scientists understand more about human cell dysfunctions linked to disorders such as diabetes, Parkinson’s and other neurodegenerative diseases.
The team, supported by the Wellcome Trust, used Diamond Light Source, one of the world’s most advanced scientific machines, to investigate a class of bacteria called ‘Gram-negative bacteria’.
Diamond produces intense light 10 billion times brighter than the sun, allowing scientists to explore almost any material in atomic detail.
Gram-negative bacteria is particularly resistant to antibiotics because of its cells’ impermeable lipid-based outer membrane.
This outer membrane acts as a defensive barrier against attacks from the human immune system and antibiotic drugs. It allows the pathogenic bacteria to survive, but removing this barrier causes the bacteria to become more vulnerable and die.
The research team previously found an ‘Achilles heel’ in this defensive barrier. But exactly how this defensive cell wall is built and maintained – the ‘assembly machinery’ – was unknown until now.
Lead researcher Prof Changjiang Dong, from UEA’s Norwich Medical School, said: “Bacterial multi-drug resistance, also known as antibiotic resistance, is a global health challenge. Many current antibiotics are becoming useless, causing hundreds of thousands of deaths each year. The number of super-bugs is increasing at an unexpected rate.
“Gram-negative bacteria is one of the most difficult ones to control because it is so resistant to antibiotics.
“All Gram-negative bacteria have a defensive cell wall. Beta-barrel proteins form the gates of the cell wall for importing nutrition and secreting important biological molecules.
“The beta-barrel assembly machinery (BAM) is responsible for building the gates (beta-barrel proteins) in the cell wall.
“Stopping the beta-barrel assembly machine from building the gates in the cell wall cause the bacteria to die.”
Scientists studied the gram-negative bacteria E.coli, in which the beta-barrel assembly machinery contains five subunits – known as BamA, BamB, BamC, BamD and BamE. They wanted to know exactly how these subunits work together to insert the outer membrane proteins into the outer membrane or cell wall.
Prof Dong said: “Our research shows the whole beta-barrel assembly machinery structures in two states – the starting and finishing states. We found that the five subunits form a ring structure and work together to perform outer membrane protein insertion using a novel rotation and insertion mechanism.
“Our work is the first to show the entire BAM complex. It paves the way for developing new-generation drugs.
Learn more: UEA scientists pave way for new generation of superbug drugs
The Latest on: Superbug drugs
[google_news title=”” keyword=”superbug drugs” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Superbug drugs
- Vaccine for superbugs? New shot shows promise in early testson December 7, 2023 at 6:00 am
A new vaccine, so far tested only in mice, broadly activates the immune system against a wide array of bacteria and fungi.
- Rheumatoid arthritis drug ‘offers new hope for type 1 diabetics’on December 6, 2023 at 2:00 pm
A rheumatoid arthritis drug can suppress the progression of type 1 diabetes, a world-first clinical trial has found.
- A silent menaceon December 5, 2023 at 9:11 pm
However, the overuse of antibiotics can lead to growth of antimicrobial resistant bacteria, commonly known as superbugs, or bacteria and fungi that are resistant to drugs designed to kill them. Some ...
- The sharing of drugs and a lack of adherence darken SA corridorson December 3, 2023 at 5:16 am
This gave rise to the “superbug”, he added, as antibodies developed resistance ... which happened when germs such as bacteria and fungi developed the ability to defeat the drugs designed to kill them.
- CNN's 'Vital Signs' explores the prospects of phage therapy to treat drug-resistant superbugson November 30, 2023 at 7:29 pm
Antibiotics have been hailed as a "miracle drug" since the discovery of penicillin in 1928, but now, more bacteria are developing resistance to antibiotics. In 2019, the United Nations estimated ...
- ‘I’ve tried and tried, and I can’t get rid of it’: The women living with drug-resistant infectionson November 29, 2023 at 4:03 am
Caroline Sampson, 60, contracted an antibiotic-resistant urinary tract infection (UTI) in 2016 after undergoing a minor gynaecological procedure. Almost seven years on with little respite, she says ...
- ‘A drug-resistant infection left me housebound and unable to work’on November 29, 2023 at 4:03 am
Most people think superbugs – or AMR – is a concern for the future ... and sexually transmitted infections have also become subject to high levels of drug resistance. These and other infections pose a ...
- SUPERBUGS ON PROWLon November 25, 2023 at 10:42 am
The message is loud and clear, and alarming too. The antimicrobial resistance (AMR) threat is already on our doorstep. AMR occurs when bacteria, viruses, fungi, and parasites evolve and become ...
- HA taps into AI in fight against superbug infectionson November 23, 2023 at 6:23 pm
The Hospital Authority will harness the power of artificial intelligence to improve the way it prescribes drugs, and fight the spread of superbugs.
- One in 10 children carry superbug drugs can't touchon November 23, 2023 at 4:01 pm
a drug used as a last resort for patients with post-surgery infections. Only a handful of cases of a superbug resistant even to vancomycin have so far been reported. Professor Brian Duerden ...
via Bing News