Northwestern University researchers have developed a new hybrid polymer with removable supramolecular compartments, shown in this molecular model. (Credit: Mark E. Seniw, Northwestern University)
Imagine a polymer with removable parts that can deliver something to the environment and then be chemically regenerated to function again. Or a polymer that can lift weights, contracting and expanding the way muscles do.
These functions require polymers with both rigid and soft nano-sized compartments with extremely different properties that are organized in specific ways. A completely new hybrid polymer of this type has been developed by Northwestern University researchers that might one day be used in artificial muscles or other life-like materials; for delivery of drugs, biomolecules or other chemicals; in materials with self-repair capability; and for replaceable energy sources.
“We have created a surprising new polymer with nano-sized compartments that can be removed and chemically regenerated multiple times,” said materials scientist Samuel I. Stupp, the senior author of the study.
“Some of the nanoscale compartments contain rigid conventional polymers, but others contain the so-called supramolecular polymers, which can respond rapidly to stimuli, be delivered to the environment and then be easily regenerated again in the same locations. The supramolecular soft compartments could be animated to generate polymers with the functions we see in living things,” he said.
Stupp is director of Northwestern’s Simpson Querrey Institute for BioNanotechnology. He is a leader in the fields of nanoscience and supramolecular self-assembly, the strategy used by biology to create highly functional ordered structures.
The hybrid polymer cleverly combines the two types of known polymers: those formed with strong covalent bonds and those formed with weak non-covalent bonds, well known as “supramolecular polymers.” The integrated polymer offers two distinct “compartments” with which chemists and materials scientists can work to provide useful features.
The study will be published in the Jan. 29 issue of Science.
“Our discovery could transform the world of polymers and start a third chapter in their history: that of the ‘hybrid polymer,’” Stupp said. “This would follow the first chapter of broadly useful covalent polymers, then the more recent emerging class of supramolecular polymers.
“We can create active or responsive materials not known previously by taking advantage of the compartments with weak non-covalent bonds, which should be highly dynamic like living things. Some forms of these polymers now under development in my laboratory behave like artificial muscles,” he said.
Polymers get their power and features from their structure at the nanoscale. The covalent rigid skeleton of Stupp’s first hybrid polymer has a cross-section shaped like a ninja star — a hard core with arms spiraling out. In between the arms is the softer “life force” material. This is the area that can be animated, refreshed and recharged, features that could be useful in a range of valuable applications.
“The fascinating chemistry of the hybrid polymers is that growing the two types of polymers simultaneously generates a structure that is completely different from the two grown alone,” Stupp said. “I can envision this new material being a super-smart patch for drug delivery, where you load the patch with different medications, and then reload it in the exact same compartments when the medicine is gone.”
Stupp also is the Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering and holds appointments in Northwestern University Feinberg School of Medicine, the McCormick School of Engineering and Applied Science and the Weinberg College of Arts and Sciences.
Stupp and his research team also discovered that the covalent polymerization that forms the rigid compartment is “catalyzed” by the supramolecular polymerization, thus yielding much higher molecular weight polymers.
The strongly bonded covalent compartment provides the skeleton, and the weakly bonded supramolecular compartment can wear away or be used up, depending on its function, and then be regenerated by adding small molecules. After the simultaneous polymerizations of covalent and non-covalent bonds, the two compartments end up bonded to each other, yielding a very long, perfectly shaped cylindrical filament.
To better understand the hybrid’s underlying chemistry, Stupp and his team worked with George C. Schatz, a world-renowned theoretician and a Charles E. and Emma H. Morrison Professor of Chemistry at Northwestern. Schatz’s computer simulations showed the two types of compartments are nicely integrated with hydrogen bonds, which are bonds that can be broken. Schatz is a co-author of the study.
“This is a remarkable achievement in making polymers in a totally new way — simultaneously controlling both their chemistry and how their molecules come together,” said Andy Lovinger, a materials science program director at the National Science Foundation, which funded this research.
“We’re just at the very start of this process, but further down the road it could potentially lead to materials with unique properties — such as disassembling and reassembling themselves — which could have a broad range of applications,” Lovinger said.
Read more: RESEARCHERS DEVELOP COMPLETELY NEW KIND OF POLYMER
The Latest on: Hybrid polymers
via Google News
The Latest on: Hybrid polymers
- Dow announces recycling partnerships with Nexus Circular, Valoregenon August 3, 2022 at 1:51 pm
Midland-based Dow recently announced two partnerships with other companies that will have significant impacts on its recycling efforts. Dow and Nexus Circular announced on July 21 that they have ...
- Global Automotive Market to Grow 5.3% Annually for Next Five Yearson August 2, 2022 at 1:01 pm
The global automotive sector will inflate the demand for sustainability targets to minimize CO2 emissions in the next 3–5 years, says Frost & Sullivan.
- Global Automotive Plastics Market Boosted by the Need to Minimize CO2 Emissionson August 1, 2022 at 2:21 am
For every kilogram reduced from a vehicle's weight, plastics reduce a car's carbon dioxide (CO2) emissions by approximately 20 kg during its operating life cycle. The stringent regulations for OEMs to ...
- Dow and Valoregen to build largest hybrid recycling site in Franceon July 27, 2022 at 10:21 pm
Dow announced an agreement with French recycling company Valoregen to contribute to building the largest single hybrid recycling site in France, to be owned and operated by Valoregen.
- MS Polymer Hybrid Adhesives & Sealants Market 2022 Growth Analysis, Scenario on Latest Trends, and Applications 2030on July 27, 2022 at 2:26 am
Key Companies Covered in the MS Polymer Hybrid Adhesives & Sealants Market Research are Henkel, Arkema (Bostik), Sika AG, H.B. Fuller, Dow, MAPEI S.p.A, Saint-Gobain, SABA, Merz + Benteli AG (Merbenit ...
- Dow and Valoregan to build hybrid plastics-recycling plant in Franceon July 26, 2022 at 9:46 am
Dow (Midland, Mich.) announced an agreement with French recycling company Valoregen to contribute to building the largest single hybrid recycling site in ...
- Valoregen and Dow announce plans to build hybrid recycling planton July 25, 2022 at 12:30 am
Valoregen and Dow will partner to build a hybrid site offering both mechanical and advanced recycling capacities in France, with Dow to be the main off-taker of post-consumer resins from the new plant ...
- Conducting Polymers Boost PIERS Spectroscopy Signal Five-Foldon July 22, 2022 at 1:15 pm
Semiconductors and plasmonic nanomaterials can be coupled to develop photocatalytic and detection systems. Nanoscale composites containing semiconductors and metals can improve plasmon-assisted ...
- Emulsion Polymers Market to hit US$ 66 Bn by 2027on July 21, 2022 at 11:05 pm
Vinyl Acetate Polymers, Polyurethane, Silicone, and Hybrid Epoxy; and End-Use: Paints and Coatings, Paper and Paperboard, Adhesives, Textiles and Non-Woven and Leather) – Global Industry ...
- McKinsey's take on plastics: not so badon July 21, 2022 at 5:01 am
In the end, plastics outperformed alternatives like steel in hybrid fuel tanks in vehicles by contributing 90 percent less greenhouse gasses. In grocery bags, plastics emitted 80 percent less ...
via Bing News