
TeYu Chien, a UW assistant professor in the Department of Physics and Astronomy, uses a low-temperature scanning tunneling microscope in his lab to observe nanomaterials. Chien is the lead author of a paper that appears in the journal Scientific Reports. His research determined that the electric field is responsible for the alteration of the fracture toughness of nanomaterials, which are used in state-of-the-art electronic devices. (UW Photo)
Mechanical properties of nanomaterials can be altered due to the application of voltage, University of Wyoming researchers have discovered.
The researchers, led by TeYu Chien, a UW assistant professor in the Department of Physics and Astronomy, determined that the electric field is responsible for altering the fracture toughness of nanomaterials, which are used in state-of-the-art electronic devices. It is the first observed evidence that the electric field changes the fracture toughness at a nanometer scale.
This finding opens the way for further investigation of nanomaterials regarding electric field-mechanical property interactions, which is extremely important for applications and fundamental research.
Chien is the lead author of a paper, titled “Built-in Electric Field Induced Mechanical Property Change at the Lanthanum Nickelate/Nb-doped Strontium Titanate Interfaces,” that was recently published in Scientific Reports. Scientific Reports is an online, open-access journal from the publishers of Nature. The journal publishes scientifically valid primary research from all areas of the natural and clinical sciences.
Other researchers who contributed to the paper are from the University of Arkansas, University of Tennessee and Argonne National Laboratory in Argonne, Ill.
Chien and his research team studied the surfaces of the fractured interfaces of ceramic materials, including lanthanum nickelate and strontium titanate with a small amount of niobium. The researchers revealed that strontium titanate, within a few nanometers of the interfaces, fractured differently from the strontium titanate away from the interfaces.
The two ceramic materials were chosen because one is a metallic oxide while the other is a semiconductor. When the two types of materials come into contact with each other, an intrinsic electric field will automatically be formed in a region, known as the Schottky barrier, near the interface, Chien explains. The Schottky barrier refers to the region where an intrinsic electric field is formed at metal/semiconductor interfaces.
The intrinsic electric field at interfaces is an inevitable phenomenon whenever one material is in contact with another. The electric field effects on the mechanical properties of materials are rarely studied, especially for nanomaterials. Understanding electric field effects is extremely important for applications of nanoelectromechanical system (NEMS), which are devices, such as actuators, integrating electrical and mechanical functionalities on the nanoscale.
For NEMS materials made in nanoscale, understanding the mechanical properties affected by electric fields is crucial for full control of device performance. The observations in this study pave the way to better understand the mechanical properties of nanomaterials.
“The electric field changes the inter-atomic bond length in the crystal by pushing positively and negatively charged ions in opposite directions,” Chien says. “Altering bond length changes bond strength. Hence, the mechanical properties, such as fracture toughness.”
“The whole picture is this: The intrinsic electric field in the Schottky barrier was created at the interfaces. This then polarized the materials near the interfaces by changing the atomic positions in the crystal. The changed atomic positions altered the inter-atomic bond length inside the materials to change the mechanical properties near the interfaces,” Chien summarizes.
Read more: Mechanical Properties of Nanomaterials Are Altered Due to Electric Field, UW Researchers Find
The Latest on: Mechanical properties of nanomaterials
via Google News
The Latest on: Mechanical properties of nanomaterials
- Worldwide Nanotechnology and Nanomaterials in Packaging Industry in 2021 - 78 Companies Profiled Including Asahi Kasei, Dow & Valentis Nanotechon January 22, 2021 at 3:03 pm
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
- Worldwide Nanotechnology and Nanomaterials in Packaging Industry in 2021 - 78 Companies Profiled Including Asahi Kasei, Dow & Valentis Nanotechon January 22, 2021 at 12:52 pm
For more information about this report visit https://www.researchandmarkets.com/r/hv88te Research and Markets also offers Custom Research services providing focused ...
- Worldwide Nanotechnology and Nanomaterials in Packaging Industry in 2021 - 78 Companies Profiled Including Asahi Kasei, Dow & Valentis Nanotechon January 22, 2021 at 12:17 pm
The "The Global Market for Nanotechnology and Nanomaterials in Packaging" report has been added to ResearchAndMarkets.com's offering. Nanomaterials have already been commercialized at various stages ...
- Worldwide Nanotechnology and Nanomaterials in Packaging Industry in 2021 - 78 Companies Profiled Including Asahi Kasei, Dow & Valentis Nanotechon January 22, 2021 at 12:08 pm
Their enhanced properties, such as UV protection, barrier to moisture, gases and volatile components, mechanical strength, significantly improve packaging materials. Nanomaterials-based packaging ...
- Global Market for Nanotechnology and Nanomaterials in Packaging - Reduce Reliance on Petroleum-based Packaging - ResearchAndMarkets.comon January 20, 2021 at 8:30 am
but with the same mechanical properties as commonly used materials. ensure food safety and traceability for the entire supply chain. Market drivers and trends for the use of nanomaterials in ...
- Global Market for Nanotechnology and Nanomaterials in Packaging - Reduce Reliance on Petroleum-based Packaging - ResearchAndMarkets.comon January 20, 2021 at 8:29 am
The "The Global Market for Nanotechnology and Nanomaterials in Packaging" report has been added to ResearchAndMarkets.com's offering. Nanomaterials have already been commercialized at various stages ...
- 2021 Outlook on the Packaging Nanotechnology and Nanomaterials Market - Key Drivers and Trendson January 20, 2021 at 2:14 am
CONTACT: ResearchAndMarkets.com Laura Wood, Senior Press Manager [email protected] For E.S.T Office Hours Call 1-917-300-0470 For U.S./CAN Toll Free Call 1-800-526-8630 For GMT Office ...
- Optical selection and sorting of nanoparticles according to quantum mechanical propertieson January 14, 2021 at 3:02 am
carbon nanomaterials, molecular aggregates, and metal nanoparticles—have attracted great attention owing to their unique mechanical and quantum mechanical properties and have been used in various ...
- University of Texas researcher recognized for pioneering work utilizing nanotechnoon January 12, 2021 at 10:09 pm
Guihua Yu, Ph.D., Associate Professor of Materials Science and Mechanical Engineering in the Cockrell School of Engineering at The University of Texas at Austin, is the recipient of the 2021 Edith and ...
- 8.4: Physical Properties of Nanomaterialson February 18, 2018 at 12:50 am
Mechanical properties of nanomaterials may reach the theoretical strength, which are one or two orders of magnitude higher than that of single crystals in the bulk form. The enhancement in mechanical ...
via Bing News