The method is aimed at colorectal and lung cancers, which are difficult to diagnose in their earliest stages.
Using tiny “nanopore” scanners that can detect individual DNA molecules, Professor Amit Meller and colleagues are on the hunt for biological markers in cancer cells that may help clinicians diagnose colorectal and lung cancers at their earliest stages.
Prof. Meller, of the Faculty of Biomedical Engineering at the Technion-Israel Institute of Technology, leads a research group that is a partner in BeyondSeq, an international research consortium looking for new methods of decoding genetic and epigenetic information from medical samples. BeyondSeq, supported by a €6 million grant from Horizon 2020, the European Union’s framework program, was one of only eight consortia chosen out of 450 submitted proposals.
“We are the only lab in the consortium working on early diagnosis of cancer biomarkers, which…will allow doctors to combat the cancers much more effectively and save human lives,” Meller explained. “Currently there are no good ways to diagnose colorectal cancer and lung cancer at early stages. Usually these cancers are diagnosed at later stage (stage 2 or above) in which the patients may already have multiple secondary tumors, hence highly complicating treatment.”
The nanopore technology developed by Meller and colleagues consists of tiny holes—about 100,000 times smaller than the thickness of a sheet of paper—drilled in ultra-thin silicon membranes. The researchers pass a current of electrically charged salt ions through the nanopore that attracts molecules such as DNA, which have their own natural electrical change, toward the pores. The DNA molecules are threaded through the pore and as they slide from one side of the membrane to the other, the pore acts as a scanner. Both optical and electrical signals given off as the molecule passes through the pore are detected providing information on the DNA properties, such as its length and sequence variations.
Meller said his team will be using the nanopores to looking at slight variations in the DNA nucleotides or “letters” that spell out the KRAS gene, which has already been identified as an important biomarker in colorectal and lung cancers. “We can encode the nucleotides variations in the KRAS gene with sets of color-emitting dyes and read the information with our nanopore sensor. We hope that our nanopore technology can be adapted for early detection, where the sensing of these biomarkers is currently extremely challenging and not accessible by conventional methods,” he said.
Nanopores could prove especially useful for early detection because they can scan very small amounts of molecules, uncovering the few cancerous cells or molecular markers of cancer in a large sample of healthy blood or tissue, he added.
The team is also developing a nanopore-based method to detect epigenetic modifications at the single-molecule level. Epigenetic modifications are chemical changes made to a DNA molecule. These chemical changes don’t alter the sequence of DNA letters that spells out a gene, but they can affect how the protein encoded by that gene is expressed inside a cell. (Some people have likened this difference to the markings on a musical score: think of the genetic sequence as the musical notes, while the epigenetic modifications are the instructions that tell a musician whether to play the note softly or loudly, for instance.)
Nanopores offer one way to see whether a piece of DNA has some of these epigenetic instructions attached to it, which could help scientists determine whether any of these instructions correlate to how a disease like cancer develops.
Meller and his colleagues have been developing the possibilities of nanopores for more than 15 years. In a paper published in Scientific Reports earlier this year, they demonstrated that the pores could detect the presence of a single transcription factor, a protein that activates the production of messenger RNA from the DNA. The pore’s scanning capabilities were even powerful enough to distinguish between two separate ways that the transcription factor could bind itself to the DNA, each with its own transcriptional effects.
Read more: RESEARCHERS USE “NANOPORE” SCANNERS TO FIND EARLY SIGNS OF CANCER
The Latest on: Nanopore Scanners
via Google News
The Latest on: Nanopore Scanners
- PloS oneon July 27, 2022 at 5:00 pm
Are one's attachment avoidance toward a particular person and his/her placement of this particular person in the attachment hierarchy inversely overlapping? Four bifactor-analysis studies.
- Microbiology & Immunology 2017on July 27, 2022 at 5:00 pm
The LabRoots Microbiology & Immunology 2017 Virtual Conference is now On-Demand! Join us in bringing the Microbiology research community together online in discovering new concepts, tools and ...
- Genetics and Genomicson July 27, 2022 at 5:00 pm
The LabRoots 4 th Annual Genetics and Genomics free virtual conference was a wonderful event for research scientists, post docs, principal investigators, lab directors and other genetics professionals ...
- Hackaday Podcast 111: 3D Graphics Are Ultrasonic, Lobotomizing Alexa, 3D-Printing Leaky Rockets, And Gaming The Font Systemon July 22, 2022 at 5:00 pm
Hackaday editors Mike Szczys and Elliot Williams curate a week of great hacks. Physical displays created in 3D space are a holy grail, and you can make one with 200 ultrasonic transducers, four ...
- RNA Sequencing Market: Increasing Demand for RNA Sequencing Platforms over Traditional Technologies to Propel the Market Growthon July 20, 2022 at 5:00 pm
In terms of technology, the market can be segregated into sequencing by synthesis, single molecule real time sequencing, nanopore sequencing, and Ion semiconductor sequencing. Based on application ...
- Global NGS Oncology Market Report 2022-2027: Featuring Key Players Bio-Rad Laboratories, Oxford Nanopore Technologies, Pillar Biosciences & Otheron July 14, 2022 at 7:42 am
Inadequate NGS Oncology Reimbursement Scenario Increasing Cost of NGS Automated Sample Preparation Instruments Barriers in the Advancement of NGS Oncology ...
- CAP-XX Limited (LON:CPX) Insider Steen Feldskov Buys 109,213 Shares of Stockon July 12, 2022 at 10:17 pm
The company provides its products for the use in various applications, such as asset tracking, auto, locks, PDAs, scanners, smart meters, wearable devices, wireless sensors, battery support ...
- Genomics Market Top Players Analysis | Beijing Genomics Institute, Danaher Corporation, Oxford Nanopore Technologies, GE Healthcare and Among Otherson July 7, 2022 at 4:28 pm
Pune, July 07, 2022 (GLOBE NEWSWIRE) -- Genomics Market by Vendor Assessment, Technology Assessment, Partner & Customer Ecosystem, type/solution, service, organization size, end-use verticals, and ...
- Billions from boffins: how to profit from university spin-out companieson June 28, 2022 at 5:00 pm
And in December, gene-sequencing firm Oxford Nanopore made headlines when it ... Recently Kromek won a contract to deploy its bottle scanner at an Asian airport, while a baggage scanner containing ...
- The fledgling industries emerging from our universitieson August 2, 2018 at 3:37 am
Oxford Nanopore alone accounts for 26.9% of it ... £20m and the product range included superconducting magnets for MRI scanners. The firm was floated on the London stock exchange in 1983.
via Bing News