New efficiency record: This small device is able to convert 14 percent of the incoming solar energy into hydrogen. Credit: M. May
An international team has now succeeded in considerably increasing the efficiency for direct solar water splitting. They are using a tandem solar cell whose surfaces have been selectively modified. The new record value is 14 % and thus considerably above the previous record of 12.4 % held by the National Renewable Energy Laboratory (NREL) in the USA, broken now for the first time in 17 years.
Researchers from the Institute for Solar Fuels at the Helmholtz-Zentrum Berlin, TU Ilmenau, the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg and the California Institute of Technology (Caltech) participated in the collaboration. The results have been published in Nature Communications.
Solar energy is abundantly available globally, but unfortunately not constantly and not everywhere. One especially interesting solution for storing this energy is artificial photosynthesis. This is what every leaf can do, namely converting sunlight to “chemical energy”. That can take place with artificial systems based on semiconductors as well. These use the electrical power that sunlight creates in individual semiconductor components to split water into oxygen and hydrogen. Hydrogen possesses very high energy density, can be employed in many ways and could replace fossil fuels. In addition, no carbon dioxide harmful to the climate is released from hydrogen during combustion, instead only water. Until now, manufacturing of solar hydrogen at the industrial level has failed due to the costs, however. This is because the efficiency of artificial photosynthesis, i.e. the energy content of the hydrogen compared to that of sunlight, has simply been too low to produce hydrogen from the sun economically.
Record value now exceeded
Scientific facilities worldwide have therefore been researching for many years how to break the existing record for artificial photosynthesis of 12.4 %, which has been held for 17 years by NREL in the USA.
Core component: Tandem Solar Cell
Now a team from TU Ilmenau, HZB, the California Institute of Technology as well as the Fraunhofer ISE has
considerably exceeded this record value. Lead author Matthias May, active at TU Ilmenau and the HZB Institute for Solar Fuels, processed and surveyed about one hundred samples in his excellent doctoral dissertation to achieve this. The fundamental components are tandem solar cells of what are known as III-V semiconductors. Using a now patented photo-electrochemical process, May could modify certain surfaces of these semiconductor systems in such a way that they functioned better in water splitting.
Stability improved
“We have electronically and chemically passivated in situ the aluminium-indium-phosphide layers in particular and thereby efficiently coupled to the catalyst layer for hydrogen generation. In this way, we were able to control the composition of the surface at sub-nanometre scales”, explains May. There was enormous improvement in long-term stability as well. At the beginning, the samples only survived a few seconds before their power output collapsed. Following about a year of optimising, they remain stable for over 40 hours. Further steps toward a long-term stability goal of 1000 hours are already underway.
Next goals visible
“Forecasts indicate that the generation of hydrogen from sunlight using high-efficiency semiconductors could be economically competitive to fossil energy sources at efficiency levels of 15 % or more.
Read more: Hydrogen from sunlight: new efficiency record for artificial photosynthesis
The Latest on: Artificial photosynthesis
via Google News
The Latest on: Artificial photosynthesis
- Research Resultson May 22, 2022 at 9:48 pm
This achievement represents a huge step toward the development of technology enabling the artificial control of photosynthesis, and it may even change the entire direction of research and development ...
- Artificial Photosynthesis Market Size, Future Analysis & Opportunity Outlook 2030on May 17, 2022 at 5:58 pm
Research Nester published a report titled “Artificial Photosynthesis Market : Global Demand Analysis & Opportunity Outlook 2030″ ...
- Bacterial biofilms facilitate biocompatible bio-abiotic interfaces for semi-artificial photosynthesison May 9, 2022 at 6:35 am
Semi-artificial photosynthesis integrates the high selectivity of living biosystems and the broad-range light-harvesting of semi-conductive materials, which enables sustainable light-driven ...
- Artificial Photosynthesis Market Estimated to Experience a Hike in Growth by 2031on May 8, 2022 at 10:50 pm
The growing need for clean energy around the globe due to the depleting non-renewable resources may trigger the growth prospects of the artificial photosynthesis market during the forecast period ...
- The Worldwide Artificial Photosynthesis Industry is Expected to Reach $185 Million by 2030 - ResearchAndMarkets.comon May 7, 2022 at 8:36 pm
DUBLIN, April 19, 2022--(BUSINESS WIRE)--The "Worldwide Artificial Photosynthesis Industry to 2030" report has been added to ResearchAndMarkets.com's offering. The artificial photosynthesis market ...
- Artificial Photosynthesis Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2021-2031on May 6, 2022 at 12:28 am
Artificial Photosynthesis Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2021-2031 ...
- How a soil microbe could rev up artificial photosynthesison April 29, 2022 at 9:59 am
Erb's research team had been working to develop bioreactors for artificial photosynthesis to convert carbon dioxide (CO 2) from the atmosphere into all sorts of products. This animation shows two ...
- Artificial Photosynthesis Market Report with data tracker, emerging trends, sales forecast, opportunities and competitive intelligenceon April 11, 2022 at 11:46 am
Global Artificial Photosynthesis Market is estimated to be $70 million in 2022. The research and analytics firm Datavagyanik released the updated version if its report on “Artificial ...
via Bing News