A smart device that translates sign language while being worn on the wrist could bridge the communications gap between the deaf and those who don’t know sign language, says a Texas A&M University biomedical engineering researcher who is developing the technology.
The wearable technology combines motion sensors and the measurement of electrical activity generated by muscles to interpret hand gestures, says Roozbeh Jafari, associate professor in the university’s Department of Biomedical Engineering and researcher at the Center for Remote Health Technologies and Systems.
Although the device is still in its prototype stage, it can already recognize 40 American Sign Language words with nearly 96 percent accuracy, notes Jafari who presented his research at the Institute of Electrical and Electronics Engineers (IEEE) 12th Annual Body Sensor Networks Conference this past June. The technology was among the top award winners in the Texas Instruments Innovation Challenge this past summer.
The technology, developed in collaboration with Texas Instruments, represents a growing interest in the development of high-tech sign language recognition systems (SLRs) but unlike other recent initiatives, Jafari’s system foregoes the use of a camera to capture gestures. Video-based recognition, he says, can suffer performance issues in poor lighting conditions, and the videos or images captured may be considered invasive to the user’s privacy. What’s more, because these systems require a user to gesture in front of a camera, they have limited wearability – and wearability, for Jafari, is key.
“Wearables provide a very interesting opportunity in the sense of their tight coupling with the human body,” Jafari says. “Because they are attached to our body, they know quite a bit about us throughout the day, and they can provide us with valuable feedback at the right times. With this in mind, we wanted to develop a technology in the form factor of a watch.”
In order to capture the intricacies of American Sign Language, Jafari’s system makes use of two distinct sensors. The first is an inertial sensor that responds to motion. Consisting of an accelerometer and gyroscope, the sensor measures the accelerations and angular velocities of the hand and arm, Jafari notes. This sensor plays a major role in discriminating different signs by capturing the user’s hand orientations and hand and arm movements during a gesture.
However, a motion sensor alone wasn’t enough, Jafari explains. Certain signs in American Sign Language are similar in terms of the gestures required to convey the word. With these gestures the overall movement of the hand may be the same for two different signs, but the movement of individual fingers may be different.
For example, the respective gestures for “please” and “sorry” and for “name” and “work” are similar in hand motion. To discriminate between these types of hand gestures, Jafari’s system makes use of another type of sensor that measures muscle activity.
Known as an electromyographic sensor (sEMG), this sensor non-invasively measures the electrical potential of muscle activities, Jafari explains. It is used to distinguish various hand and finger movements based on different muscle activities. Essentially, it’s good at measuring finger movements and the muscle activity patterns for the hand and arm, working in tandem with the motion sensor to provide a more accurate interpretation of the gesture being signed, he says.
In Jafari’s system both inertial sensors and electromyographic sensors are placed on the right wrist of the user where they detect gestures and send information via Bluetooth to an external laptop that performs complex algorithms to interpret the sign and display the correct English word for the gesture. As Jafari continues to develop the technology, he says his team will look to incorporate all of these functions into one wearable device by combining the hardware and reducing the overall size of the required electronics. He envisions the device collecting the data produced from a gesture, interpreting it and then sending the corresponding English word to another person’s smart device so that he or she can understand what is being signed simply by reading the screen of their own device. In addition, he is working to increase the number of signs recognized by the system and expanding the system to both hands.
“The combination of muscle activation detection with motion sensors is a new and exciting way of understanding human intent with other applications in addition to enhanced SLR systems, such as home device activations using context-aware wearables,” Jafari says.
Read more: A smart device that translates sign language while being worn on the wrist
The Latest on: Context-aware wearables
via Google News
The Latest on: Context-aware wearables
- Artificial Intelligence Market worth $190.61 billion by 2025, at a CAGR of 36.62%on February 25, 2021 at 2:20 pm
Artificial Intelligence Market” [222 Pages] Artificial Intelligence Market report categorizes the Global market by Offering (Hardware, Software), Technology ...
- Cognixion’s newest wearable is a brain-computer interface that uses AR to convert thought into speech!on February 23, 2021 at 4:31 pm
Today, Cognixion ONE, a wearable speech-generating device with AR ... its signals into electrical signals that guide users through features like a context-aware predictive keyboard, radial sentence ...
- Sensors (Basel, Switzerland)on February 17, 2021 at 4:00 pm
Quantifying the Varying Predictive Value of Physical Activity Measures Obtained from Wearable Accelerometers on All-Cause Mortality over Short to Medium Time Horizons in NHANES 2003-2006.
- Artificial Intelligence in Healthcare Marketon February 15, 2021 at 7:48 am
This Artificial Intelligence in Healthcare Market report acts as an excellent market report because it is produced with the several critical factors. Artificial Intelligence in Healthcare Market ...
- AR-powered brain computer allows speech & home interactionon February 2, 2021 at 4:00 pm
Described as “a wearable window to the world”, the device offers both speech and an integrated AI assistant for home automation control and other applications. Cognixion ONE was designed by ...
- Alumni of Smart Environmentson July 16, 2019 at 9:37 pm
These Wearable technologies are becoming increasingly sophisticated ... and privacy. This thesis proposes context-aware communication and demonstrates how this can be established automatically by ...
- Disney Creates Smartwatch That Identifies Objects Based on Electromagnetic Signalson November 14, 2015 at 8:23 am
The technology could pave the way for the development of context-aware applications, including the advancement of wearable technology, where an EM-Sense enabled smartwatch can unlock devices au ...
- Cheol-Hong Minon September 14, 2015 at 5:22 am
Dr. Min has a background in Electrical and Computer Engineering with emphasis in Signal Processing and Wearable Technology. His interest lies in sensor system design and algorithm development for ...
- QUIK.O - QuickLogic Corporation Profile | Reuterson August 1, 2011 at 5:06 pm
The Company's solutions primarily target smartphones, wearable devices ... sensor fusion and context aware algorithms, and embedded software. The Company's solutions are created from its new ...
via Bing News