Berkeley Lab Researchers Use Solar Energy and Renewable Hydrogen to Produce Methane
A team of researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) developing a bioinorganic hybrid approach to artificial photosynthesis have achieved another milestone. Having generated quite a buzz with their hybrid system of semiconducting nanowires and bacteria that used electrons to synthesize carbon dioxide into acetate, the team has now developed a hybrid system that produces renewable molecular hydrogen and uses it to synthesize carbon dioxide into methane, the primary constituent of natural gas.
“This study represents another key breakthrough in solar-to-chemical energy conversion efficiency and artificial photosynthesis,” says Peidong Yang, a chemist with Berkeley Lab’s Materials Sciences Division and one of the leaders of this study. “By generating renewable hydrogen and feeding it to microbes for the production of methane, we can now expect an electrical-to-chemical efficiency of better than 50 percent and a solar-to-chemical energy conversion efficiency of 10-percent if our system is coupled with state-of-art solar panel and electrolyzer.”
Yang, who also holds appointments with UC Berkeley and the Kavli Energy NanoScience Institute (Kavli-ENSI) at Berkeley, is one of three corresponding authors of a paper describing this research in the Proceedings of the National Academy of Sciences (PNAS). The paper is titled “A hybrid bioinorganic approach to solar-to-chemical conversion.” The other corresponding authors are Michelle Chang and Christopher Chang. Both also hold joint appointments with Berkeley Lab and UC Berkeley. In addition, Chris Chang is a Howard Hughes Medical Institute (HHMI) investigator. (See below for a full list of the paper’s authors.)
Photosynthesis is the process by which nature harvests the energy in sunlight and uses it to synthesize carbohydrates from carbon dioxide and water. Carbohyrates are biomolecules that store the chemical energy used by living cells. In the original hybrid artificial photosynthesis system developed by the Berkeley Lab team, an array of silicon and titanium oxide nanowires collected solar energy and delivered electrons to microbes which used them to reduce carbon dioxide into a variety of value-added chemical products. In the new system, solar energy is used to split the water molecule into molecular oxygen and hydrogen. The hydrogen is then transported to microbes that use it to reduce carbon dioxide into one specific chemical product, methane.
“In our latest work, we’ve demonstrated two key advances,” says Chris Chang. “First, our use of renewable hydrogen for carbon dioxide fixation opens up the possibility of using hydrogen that comes from any sustainable energy source, including wind, hydrothermal and nuclear. Second, having demonstrated one promising organism for using renewable hydrogen, we can now, through synthetic biology, expand to other organisms and other value-added chemical products.”
The concept in the two studies is essentially the same – a membrane of semiconductor nanowires that can harness solar energy is populated with bacterium that can feed off this energy and use it to produce a targeted carbon-based chemical. In the new study, the membrane consisted of indium phosphide photocathodes and titanium dioxide photoanodes. Whereas in the first study, the team worked with Sporomusa ovata, an anaerobic bacterium that readily accepts electrons from the surrounding environment to reduce carbon dioxide, in the new study the team populated the membrane with Methanosarcina barkeri, an anaerobic archaeon that reduces carbon dioxide using hydrogen rather than electrons.
“Using hydrogen as the energy carrier rather than electrons makes for a much more efficient process as molecular hydrogen, through its chemical bonds, has a much higher density for storing and transporting energy,” says Michelle Chang.
Read more: Another Milestone in Hybrid Artificial Photosynthesis
The Latest on: Artificial Photosynthesis
via Google News
The Latest on: Artificial Photosynthesis
- Research Resultson May 22, 2022 at 9:48 pm
This achievement represents a huge step toward the development of technology enabling the artificial control of photosynthesis, and it may even change the entire direction of research and development ...
- Artificial Photosynthesis Market Size, Future Analysis & Opportunity Outlook 2030on May 17, 2022 at 5:58 pm
Research Nester published a report titled “Artificial Photosynthesis Market : Global Demand Analysis & Opportunity Outlook 2030″ ...
- Bacterial biofilms facilitate biocompatible bio-abiotic interfaces for semi-artificial photosynthesison May 15, 2022 at 7:06 am
Semi-artificial photosynthesis integrates the high selectivity of living biosystems and the broad-range light-harvesting of semi-conductive materials, which enables sustainable light-driven ...
- Artificial Photosynthesis Market Estimated to Experience a Hike in Growth by 2031on May 8, 2022 at 10:50 pm
The growing need for clean energy around the globe due to the depleting non-renewable resources may trigger the growth prospects of the artificial photosynthesis market during the forecast period ...
- The Worldwide Artificial Photosynthesis Industry is Expected to Reach $185 Million by 2030 - ResearchAndMarkets.comon May 7, 2022 at 8:36 pm
DUBLIN, April 19, 2022--(BUSINESS WIRE)--The "Worldwide Artificial Photosynthesis Industry to 2030" report has been added to ResearchAndMarkets.com's offering. The artificial photosynthesis market ...
- Artificial Photosynthesis Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2021-2031on May 6, 2022 at 12:28 am
Artificial Photosynthesis Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2021-2031 ...
- How a soil microbe could rev up artificial photosynthesison April 29, 2022 at 9:59 am
Erb's research team had been working to develop bioreactors for artificial photosynthesis to convert carbon dioxide (CO 2) from the atmosphere into all sorts of products. This animation shows two ...
- Artificial Photosynthesis Market Report with data tracker, emerging trends, sales forecast, opportunities and competitive intelligenceon April 11, 2022 at 11:46 am
Global Artificial Photosynthesis Market is estimated to be $70 million in 2022. The research and analytics firm Datavagyanik released the updated version if its report on “Artificial ...
via Bing News